

超解像顕微鏡の技術と応用

The Technologies and the Applications of Super Resolution Microscopy

及 川 義 朝 Yoshiro Oikawa

- (株)ニコンインステック バイオサイエンス営業本部 アプリケーション技術部
- 要 旨 光学顕微鏡の解像度は光の回折限界によりおよそ 200 nm である、近年、この限界を超えるべく新技術が開発され、 実際の顕微鏡に適用されて製品となり、超解像顕微鏡と 呼ばれている. その一つ「構造化照明法」は、周期構造 をもった「縞模様」の照明にすることで、モアレ効果を 利用して従来捕らえられなかった回折光を取り込み、解 析により超解像画像を得る技術であり、解像度は水平方 向, Z 軸方向とも従来顕微鏡の約2倍, また時間分解能 も1枚1秒程度を実現した.もうひとつの技術「ローカ リゼーション法|は、1分子ごとに離散して蛍光を発す るように工夫した標本で、1 画面あたり 100 ポイント程 度の点の画像をとって重心を記録することを数千回以上 繰り返し、点像の集合として超解像画像を生成する方法 である. この技術により,空間分解能は水平方向, Z 軸 方向とも従来顕微鏡の約10倍の解像度を実現した。本 稿ではこれらの技術を紹介する.
- **キーワード**:回折限界,超解像顕微鏡,構造化照明法,ローカリ ゼーション法

1. はじめに

光学顕微鏡の解像度は光の回折限界により,およそ 200 nm 程度である.従来よりこの限界を超えるべくさまざ まな手法が提案されてきたが,近年いくつかの技術は実際の 顕微鏡に適用されて製品として利用できるようになり,それ らは超解像顕微鏡と呼ばれている.超解像技術のひとつであ る「構造化照明法」は,照明方法を工夫することにより超解 像画像を得る技術であり,空間分解能は水平方向,Z軸方向 とも従来顕微鏡の約2倍の解像度を,また時間分解能も1枚 1秒程度を実現した.もうひとつの技術である「ローカリゼー ション法」は,蛍光分子を1つずつばらばらに励起してそれ らの中心位置をプロットしていき,点の集まりとして超解像 画像を生成する技術であり,空間分解能は水平方向,Z軸方 向とも従来顕微鏡の約10倍の解像度を実現した.本稿では, これら2つの超解像技術について述べる.

〒100-0006 東京都千代田区有楽町 1-12-1 新有楽町ビル4階 TEL: 03-3216-9163 2012 年 8 月 17 日受付

2. 構造化照明法超解像顕微鏡の技術

落射蛍光観察で標本に照明光があたった時、光は標本の構 造によって回折を起こす. 顕微鏡の「結像」とは、直接な反 射光、すなわちゼロ次の回折光と、構造の大きさによって角 度の変わる1次の回折光の両方を対物レンズがとらえ、ゼロ 次回折光と1次回折光とを像面で干渉させてできる模様のこ とである. この1次回折光は構造体が小さくなるほど回折角 が大きくなる(広がる).したがって、対物レンズの開口数 で1次回折光をとらえられる大きさの構造までが、結像でき る解像度の限界であり、これより小さい構造体では1次回折 光の広がり角が大きく、対物レンズでとらえられないため解 像できない、ここで、ある周期構造を持った照明(構造化照 明)をほどこすと、広がってとれえられなかった1次回折光 は「回折」して対物レンズで取り込むことができる. この情 報から超解像画像を再構築するのが、構造化照明法の超解像 顕微鏡である.構造化照明法によれは水平方向約100 nm,Z 軸方向約 300 nm の解像度が得られる^{1,2)}.

顕微鏡の照明は通常はムラのない均一な照明であるが,超 解像顕微鏡N-SIMでは,ある既知の空間周波数を持った周期 構造(編模様)を標本に照射する.これが従来の顕微鏡で解 像できないほどの微小構造に照射されると「モアレ模様」と いう,粗い,すなわち空間周波数が低い模様(図2)が現れる. 今,モアレ編の空間周波数を v3,構造化照明の空間周波

図1 従来の落射蛍光画像(上)と構造化照明法超解像画像(下) の比較. 細胞: Bovine Pulmonary Artery(ウシ肺動脈)アクチ ンを Alexa488 で標識.

数を v2,元になった標本の微細構造の空間周波数を v1 とすると,v1=v2+v3 という関係がなりたつ(図3).ここで v2 は既知, またモアレは画像から読み取れるので,この 2 項より未知の項 v1 が算出できる.これが,構造化照明法の基本

図2 モアレ模様.2つの異なる空間周波数をもったパターン が重なると低い空間周波数の縞が現れる.

図3 モアレ模様の原理:構造化照明により1次回折光が「回 折」する. 原理である.

しかし,モアレ模様を「画像」として取得できても,どの ようにして微細構造を再構築すればいいだろうか.このため には,画像をフーリエ変換して,周波数空間に変換した状態 で作業する.

構造化パターンを複数回移動した画像を取得することに よって,従来顕微鏡で解像できている画像成分(低周波成分) とモアレという形で読み込んだ超解像成分(高周波数成分) とを区別して分離することができる.フーリエ変換された周 波数空間上で,それら分離された超解像成分(高周波成分)を 本来の空間周波数の位置に再配置する.この結果,表現される 空間周波数は従来成分(低周波成分)の2倍の位置まで拡張さ れる.最後に逆フーリエ変換することで,実空間上の超解像 画像として再構築される.以上が構造化照明の原理である^{1,2)}.

この方法によれば, xy 方向解像度が約100 nm と, 従来顕 微鏡の約2倍の解像度が得られ, さらにZ方向も解像度が 約300 nm と, 従来の約2倍の解像力を得ることができる. また1枚の画像は約1秒程度で取得できるのでライブセルイ メージングにも適用が可能となる³.

下記画像作例では,直径約 300 nm といわれるミトコンド リアの内部構造である「クリステ」が認識される.かつ約1 秒/枚ほどの時間分解能で画像取得できている.赤い丸で 囲った部分では特に活発な活動が見られる.

この構造化照明の技術の大きな特徴は、純粋に光学的な理 論に基づいているため蛍光標本であれば試薬を選ばずどのよ うな標本でも超解像画像を得ることができること、および上 記の例のように画像取得時間が短いことである.

さらに構造化照明は Z 方向も分解能が高くなる,すなわ ち光学断層像を得ることができ,共焦点顕微鏡のように複数 の Z スタック画像を取得して 3 次元画像再構築も可能であ

図5 Hela 細胞のミトコンドリア. MitoTrackerRed で蛍光標識.

図6 ローカリゼーション法の原理および点の集合で生成されたローカリゼーション法超解像画像. (画像は、アフリカ緑猿腎細胞の微小管)

る.固定細胞,培養細胞,組織,脳切片など観察できる標本 の種類は多様である.

3. ローカリゼーション法超解像顕微鏡の技術

解像度とは2つの離れた点を2つであると認識できる距離 で定義される.2つの点が極めて接近すると,あたかも一つ の点であるかのように見えてしまう.しかし,もしも2つの 点の蛍光を一つずつ別々にとらえることができれば,その輝 度分布の中心位置(重心位置)を座標情報としてプロットし, 次にもうひとつの点の中心位置をプロットすることで,2点 を別々に認識できる.ローカリゼーション法ではこのように, 蛍光分子をばらばらに光らせてそれらの中心位置を記録する というステップを1万回以上繰り返し,点の集合として超解 像画像を生成する技術である.この方法によれば水平方向約 20 nm, 2軸方向約50 nm と,従来の光学顕微鏡の10 倍程度 の解像度を得ることが出来る⁴⁾.

通常の蛍光試薬では、励起光があたるとすべての分子が蛍 光を発するため、輝度分布が重なり、1分子ごとの中心位置 を記録することが出来ない.そこでローカリゼーション法超 解像では、ON-OFF が可能なフォトスイッチャブルな蛍光試 薬を用いる.最初に全体を不活性状態にしたあと、弱い光を あてると一部の蛍光色素のみが活性化される.その後、読み 出しのための励起光をあてると1分子ずつばらばらに蛍光を 発することになり、その中心位置をプロットすることを繰り 返すことで、点描の集まりとして超解像画像が構築される. 以上がローリゼーション法の原理である(図 6).

さらに N-STORM という製品においては、画像取得のカ メラの前にシリンドリカルレンズを配置すると点像のボケ具 合が焦点面の上下で非対称となることを利用して、Z 情報を 読み取ることでZ 軸方向の分解能約 50 nm を実現している.

下記 (図7) は、ローカリゼーション法超解像顕微鏡で Hela 細胞でのミトコンドリアと微小管の2色での超解像画像を取 得した例である. この画像では横幅が約30 μm 程度である.

4. おわりに

超解像顕微鏡は、これまでの光学顕微鏡では解像できな

図7 ローカリゼーション法超解像顕微鏡による画像作例. Hela 細胞のミトコンドリアと微小管.

かった, 微細な構造やそのダイナミクスをとらえることがで きるようになった. 構造化照明法超解像顕微鏡では, 固定細 胞, 培養細胞, 組織切片, 脳切片, 植物細胞など多様なサン プルでの画像取得, 従来の顕微鏡ではとらえることのできな かった, 微細構造, あるいは2種類の微小領域でのタンパク 質の共局在などの画像作例に成功している. ローカリゼー ション法超解像顕微鏡は原理上固定細胞が対象となってしま うが, クラスリン, 微小管, ミトコンドリアなどの超解像画 像が得られている.

超解像顕微鏡という技術が実際に製品として使えるように なった今後は、従来の電子顕微鏡の作業の置き換えや、全く 新しい知見が生まれることを期待している.

献

文

- Gustafsson, M.G.L., Shao, L., Carlton, P.M., Wang, C.J.R., Golubovskaya, I.N., Cande, W.Z., Agard, D.A. and Sedat, J.W.: Biophys J BioFAST, published on March 13, 2008 as doi: 10.1529/ biophysj.107.120345
- 2) Gustafsson, M.G.L.: Journal of Microscopy, 198, Pt 2, 82-87 (2000)
- Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. and Gustafsson, M.G.L.: *NATURE METHODS*, VOL.6 NO.5 (2009)
- Rust, M.J., Bates, M. and Zhuang, X.: NATURE METHODS, VOL.3 NO.10, 793–795 (2006)