講 座

「定量化」時代の生物画像処理

Biological Image Processing in the Quantitative Age

木 森 義 隆

Yoshitaka Kimori

自然科学研究機構新分野創成センターイメージングサイエンス研究分野

要旨 近年のバイオイメージング研究においては、生物画像情報の「定量化」がキーワードになっている.これまで目視で処理してきた 事象に対し、数量的根拠を示すことがより重要視されるようになってきた.本稿では、定量化過程における計算機の内部画像処理 のうち、特に重要なものに焦点をあて、その内容を概説する.とりわけ、形状計測過程で生じるディジタル誤差や測定誤差などに ついて取り上げ、それらが生じる原因を考察したい.

キーワード:定量化,画像処理,形状解析,セグメンテーション

1. はじめに

電子顕微鏡あるいは各種の光学顕微鏡を用いた,いわゆる バイオイメージング研究においては,「定量化」がキーワー ドになっている.これまで目視で処理してきた事象に対し, 数量的根拠を示すことが,より重要視されるようになってき た.解析対象を目視で観察し,その内容を漏らさず記述して いくということよりも,むしろ,対象の性質を抽象化し,そ れを言語ではなく定量的に記述することに力点を置いた研究 が展開されつつある.国内の動向としては,2011年から画 像情報処理および生命科学分野の研究者が一堂に会する,「バ イオイメージ・インフォマティクスワークショップ」¹⁾が開 催されており,「定量生物学の会」²⁾を中心として形成されて いる研究者コミュニティも今後の発展が見込まれている.ま た,2014年より,総合研究大学院大学においても「定量生 物学」の授業科目が開講され³⁾,当該研究領域における人材 育成も行われるようになった.

定量化を目的とするバイオイメージング研究においては計 算機の利用が前提となる.計算機に実装された画像処理・解 析過程は,基本的に全て開示できるため,その過程に対し客 観性,再現性,反証可能性等の担保が期待される.これらは 当該研究の大きなメリットといえる.ただ,注意すべきは, ブラックボックス化して使用した解析ソフトウェアからの出 力データや,計算機上での手動操作による定量化結果には, これらの条件はあてはまらないケースもあるということであ る.処理内容を把握し,判断基準を明確に定義できてはじめ て有用な結果になり得る.

本稿では、定量化過程における計算機の内部画像処理のう

ち,特に重要なものに焦点をあて,その内容を概説する.と りわけ,形状計測に関するディジタル誤差や測定誤差など, これまで無視できるとされてきた事柄についても改めて取り 上げ,それらが生じる原因を考察したい.

2. 「定量化」とは何か

図 1a に生物画像の一例を示す. これは、カボチャ子葉細胞の電子顕微鏡写真である⁴⁾. この画像の構成関係をみると、 まず、背景と細胞領域に分けることができ、つぎに細胞領域 は核や葉緑体、ペルオキシソームなどのオルガネラの部分領 域に分けることができる. この構造を図 1b に示す. このよ うな生物画像に対する定量化とは、画像中に存在する解析対 象(細胞全体や各種オルガネラなど)の属性を計測し、数値 化することである. 通常、対象の属性としては、幾何学的形 状(領域の面積や周囲長など)、および対象領域の輝度(各 画素の保持する光強度)で表現される.

ただ,これらの属性は原画像中にそれとして認識できるよ うな特異的な符号付きで存在しているわけではない.通常, 解析対象は全画像中の部分領域となるが,その画素値は背景 などの「その他」の領域と明確に区別できるような,特別な 情報が付与されているものではない.たとえば,ある蛋白質 を蛍光色素でラベルし,蛍光顕微鏡で観察したとする.ラベ ルが存在する領域は周囲に比べ輝度が高くなるが,そこに含 まれる画素の値はその領域のみに特異的に出現するものでは ない.したがって,特定の領域を抽出(検索)するために, 直接的に輝度値の情報を用いることはできない.この点が, 生物学的データとしての画像が,その他のデータ,すなわち 塩基配列や蛋白質の3次元結晶構造データなどと大きく異な る点である.

塩基配列は、塩基の情報をA, T, G, C という記号で表現 し、3 次元結晶構造データは、特定原子の位置を xyz 空間の

^{〒 444-8787} 愛知県岡崎市明大寺町東山 5-1 E-mail: kimori@orion.ac.jp 2015 年 1 月 27 日受付

座標として一意に表現できる. これらのデータは、人間による情報処理のため、特定の生物学的情報に一対一対応するかたちで、あらかじめ定められた符号である. したがって、ある塩基配列データの GC 含量を知りたい場合は、配列中の符

図 1 (a) カボチャ子葉細胞の電子顕微鏡写真. 画像は, PODB3: The Plant Organelles Database 3¹⁹⁾より取得 (データ登録者: Kondo, M., National Institute for Basic Biology). Ch: Chloroplast, Mt: Mitochondrion, N: Nucleus, P: Peroxisome, V: Vacuole. (b) 画像の構造.

号"G"および"C"の数を計算することで目的が達成できる. これに対し,画像データはこのような処理目的の符号化が なされてない情報で構成されている.このため,原画像から, 出力として要求される数値データに至るまでには隔たりがあ る.この隔たりを埋めるものが画像処理および画像解析過程 である.

3. 生物画像における画像処理・解析

最初に画像処理過程と画像解析過程の違いをみていくこと にする. もちろんこれらは、統合されたシステムとして機能 しており、両者の区別は明瞭化できない部分もある。しかし 狭義には、各過程に係る入力と出力データの観点から区別す ることができる. 画像処理過程の入力データは画像であり、 出力も画像である.一方,画像解析過程においては、入力デー タは画像であり、出力は数値(記述データ)となる. これら の過程を含んだ、画像取得から始まる画像データの処理・解 析の流れは図2のようになる.この定義によれば、「定量化」 は、画像解析過程が担うことになる、画像処理過程では解析 対象の抽出を行い、その属性を計測できるような画像に変換 することが求められる.3.2節で説明するが、対象の属性に 対する解析方法は多数提案されており、とくに形状特徴に対 する計測方法は一意性を持っている. これに対し、定量化の ための画像処理はいまだ定まった方法(やその組み合わせ) は存在していない. 提案されている種々の手法の適用範囲は 非常に限定されており、汎用性や頑健性のあるアルゴリズム の構築が大きな課題となっている. その中でも定量化に必須 でありながら、最も実現が困難な画像処理のひとつがセグメ ンテーション処理^{5~8)} である.

3.1 定量化のための画像処理:セグメンテーション

セグメンテーションは、背景領域と解析対象領域とを区分 する処理である.上述したように原画像には、解析対象領域を 示す特異的な情報は付与されていないため、計算機には両領 域の区別ができない. セグメンテーション処理により、背景領 域に対し、解析対象領域に「レベル差」を与えることにより、 その領域を認識できるようにする.レベル差のある画像とは、 背景領域の画素値を 0、対象領域の画素値を 1 とするような 2 値化画像のことである.原画像をf(x, y) ((x, y) は画素の座 標)、2 値化画像を B(x, y) と表し、解析対象領域(部分集合) を Γ とすると 2 値化処理は以下のように書くことができる.

$$B(x,y) = \begin{cases} 1 & \text{if } f(x,y) \in \Gamma, \\ 0 & \text{if } f(x,y) \notin \Gamma. \end{cases}$$
(1)

セグメンテーション処理においては、この部分集合*Γ*を いかに定めるかということが本質的な問題である.しかし、

この問題の解決は極めて難しい.なぜなら、この問題には、 画像中の対象領域Γを認識するためにはセグメンテーショ ンが必要であるが、セグメンテーションするためには、Γが あらかじめ与えられて(すなわち認識されて)いなければな らないという因果性のジレンマが存在するためである. これ を解消するために考えられることのひとつは、対象領域を識 別するための具体的なモデルを与えることである。対象が細 胞であるなら、そのモデルを構築することになる、モデルを 用い、画像中から類似する領域を検出し、その領域をΓと 定める. ただ、この場合、一般に複雑な形状の細胞をどのよ うに表現するかという問題がでてくる.また、たとえ、いっ たんモデルが構築できたとしても、実際の細胞像とそれを合 致させるためには、形状変形が必要となり、複数の変形モデ ルが必要となろう.しかし、変形の程度の妥当性の判断や、 変形モデルと実際の細胞像との差を表すような評価法の設定 も困難であり、結局は、認識対象モデルの導入も現実的な解 決方法ではない.

現状では、実際に選択される2値化方法としては、輝度閾値処理となろう.本処理では、部分集合 Γ は閾値Tを与えることにより定められる.これは以下の条件式として表すことができる.

$$B(x,y) = \begin{cases} 1 & if f(x,y) \ge T, \\ 0 & if f(x,y) < T. \end{cases}$$
(2)

輝度閾値処理を用いる場合, セグメンテーション処理は画 像 *f*(*x*, *y*) を解析対象領域と背景領域とに区分するための閾値 *T* を求めることと同値と言える.

図3に輝度閾値処理による2値化の実例を示す.図3a(左 側)は原画像(8bit 濃淡画像)であり,図3bはその輝度値 ヒストグラムである.ヒストグラムはバイモーダルな分布と なっており,ふたつのピークは、それぞれ背景の平均輝度付 近と対象領域の平均輝度付近とに存在している.したがって、 これらのピークの谷にあたる輝度値に閾値Tを設定すれば、 ふたつの領域を区分できることになる.自動的に閾値を選定 する方法はこれまで数多く提案されているが^{9,10)}、ここでは、 Otsuの方法¹¹⁾を用いて2値化処理を行った.Otsuの方法と は、輝度値ヒストグラムに判別分析を適用し、最適なTを 選定する方法である.ヒストグラム中の背景領域および解析 対象領域に対し、それらのクラス内分散とクラス間分散の比 を分離度として求め、分離度が最大になる値をTとする.

この手法による2値化処理の結果を原画像の右側に示す. この画像の場合は、T = 129であった. 原画像は2値化画像 として、背景が黒、対象領域が白い画素で表現される. この ように表現されてはじめて、計算機が解析対象の存在を認識 できるようになる.

しかし、実際に処理すべき画像の多くでは、輝度値ヒスト グラムがバイモーダルな分布を示すものは稀であるし、対象 領域の輝度値がひとつのピークに割り当てられている保証も ない.図4aには、蛍光顕微鏡で撮影された植物細胞の画像

図3 閾値処理によるセグメンテーション. (a) 原画像(左) とその2値化画像(右). (b) 原画像輝度値のヒストグラム.

図4 (a) 原画像. PODB3¹⁹⁾より取得 (データ登録者: Yoshimoto, K., National Institute for Basic Biology). (b) 原画像の輝度値ヒ ストグラム. (c) 自動閾値法による2値化結果.

を示す¹²⁾. GFP 蛍光により,オートファゴソーム膜の蛋白 質(AtATG8a)が可視化されており(粒子状にみえる),こ の存在領域を解析対象領域とする.輝度値ヒストグラムを 図 4b に示すが,解析対象領域のピークは不明である. Otsu の方法による2値化画像(T=41)を図 4c に示す.細胞領 域がおおまかにはセグメンテーションされているが,解析対 象のセグメンテーションに失敗していることがわかる.再度, 原画像(図 4a)を見ると,解析対象領域の輝度レベルがそ の周囲とあまり差がないことがわかる.対象領域のコントラ ストが極めて弱い状態であり,このような場合は輝度閾値法 単独でのセグメンテーションは困難である.そこで,その前

図 5 (a) 対象領域の強調画像. (b) 輝度値ヒストグラム. (c) 自動閾値法による 2 値化結果.

処理として、コントラストの強調処理が有効に働く場合がある. ただ、この際、画像全体のコントラストを無選択に強調するのではなく、解析対象領域を選択的に強調する必要がある. このため、ここでは rotational morphological processing (RMP) に基づく white top-hat フィルタ¹³⁾を適用した. 原画像にこのフィルタを適用した結果を図 5a に示す. RMP に基づく white top-hat フィルタにより、対象物が選択的に抽出され、それらの領域は高い輝度値が割り当てられている. その輝度値ヒストグラムは図 5b である. バイモーダルに近い分布形状になっていることがわかる. Otsu の方法による 2 値化の結果 (T = 169) は図 5c である. 解析対象領域が明瞭にセグメンテーションされていることがわかる.

通常, セグメンテーション処理はこのような複数の処理で 構成されるが, どの対象にも対応できるような最良の構成は 定まっていない. 対象に応じて最適な構成になるよう工夫し ていくことが求められる. そして, この処理によってはじめ て対象領域に対する解析(定量化)が可能になる.

なお、セグメンテーションの問題において、人間の「知識」 の利用が重要とされる場合もある.その具体例のひとつが上 述した細胞モデルの導入である.ただ、現段階では、私たち が観察している細胞の微細な形態やその動的構造の情報を過 不足のないかたちで表現する(定式化する)ことは不可能の ように思われる.このような知識利用型のセグメンテーショ ンの体系化に関してもいまだ多くの課題が残っている.

3.2 画像解析:形状特徴の定量化

ここでは、画像解析過程における解析対象の形状特徴の計 測手法について述べる.この計測を行うためには、解析対象 はセグメンテーションされていなければならない.本過程へ の入力画像は2値化画像となる.領域の形状特徴のうち,もっ とも基本的なものは空間モーメントである.画像 f(x, y)の

図6 領域の形状特徴量.

(p+q) 次のモーメントは次のように表される.

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y).$$
(3)

また、0次 (p = q = 0) のモーメント m_{00} は以下のようになる.

$$m_{00} = \sum_{x} \sum_{y} f(x, y).$$
 (4)

これは、画素値 f(x, y) の総和であり、2 値化画像の場合は 対象領域の面積(画素の総和)を表す.また、1 次のモーメ ント m_{10} (p = 1, q = 0)、ならびに m_{01} (p = 0, q = 1)を m_{00} で 正規化すると、次式で表すように対象領域の重心(centroid) の座標(\bar{x}, \bar{y})が与えられる.

$$\overline{x} = \frac{m_{10}}{m_{00}} = \frac{\sum_{x} \sum_{y} xf(x, y)}{\sum_{x} \sum_{y} f(x, y)},$$
(5)

$$\overline{y} = \frac{m_{01}}{m_{00}} = \frac{\sum_{x} \sum_{y} yf(x, y)}{\sum_{x} \sum_{y} f(x, y)}.$$
(6)

以下にその他の代表的な形状特徴量を挙げる.まず根源的 なものとしては、対象領域の面積*S*や周囲長*L*がある (図 6a).周囲長とは、対象領域の境界(背景と接する画素 で構成される)における画素単位の距離である.これらを用 いて次のような特徴量を定義できる.

円形度:
$$\frac{4\pi S}{L^2}$$
. (7)

複雜度:
$$\frac{L^2}{4\pi S}$$
. (8)

円形度は0から1の値をとり、領域が円形の場合に値が最 大となる.対象のコンパクトさを測る特徴として多用される. また、この逆数は複雑度と呼ばれ、領域の輪郭が複数の凹凸 で構成されるなど、複雑になるほど値が大きくなる.

また,領域を囲む最小の凸領域(凸胞, convex hull)を求め,その周囲長を L_c とすると(図 6b),凸状度(convexity)を定義できる.

凸状度:
$$\frac{L_c}{L}$$
. (9)

領域に凹部が多い形状ほど(すなわち, *L* の値が大きくなるほど)凸状度の値は小さくなる.また,領域全体に占める凹部の割合は,凹率として求められる.凹部は,凸胞から対象領域を差分することで抽出できる(図 6c).

凹率:
$$\frac{L(AB)}{L} \cdot \frac{L(AB)}{L_c(AB)}$$
. (10)

ここで, *L*(*AB*) は, 弧 AB の長さ, *L_c*(*AB*) は弦 AB の長さである.

なお、上記以外にも、Fourier 記述子、wavelet 記述子を用 いた輪郭線の記述や Euler 数による領域の位相幾何学的記 述, さらに pattern spectrum による幾何学パターンの分布表 示や fractal 次元を用いた複雑さの計量など、多数の形状特 徴の表現・定量化手法が考案されている. 詳細は、文献 14)、15) を参照されたい.

さて、このような特徴量の適用に際し、実用上で問題にな ることがある。特徴量の多くは面積*S*と周囲長*L*に基づい ているため、まずはこれらを計測する必要がある。しかし、 面積は対象領域の画素を数えあげることにより容易に求まる ことに対し、周囲長の計測はそれほど容易ではない。ディジ タル画像特有の誤差(ディジタル誤差)を考慮しなければな らないためである。

周囲長計測の定義は複数存在するが,通常用いられている 方法は以下のふたつであろう.

1)対象領域の境界を構成する画素の総和を求める.

$$L_1 = N.$$
 (N は境界画素の総和) (11)

2)境界画素において、ある画素と水平・垂直方向に接する 画素との距離を1(単位)とし、対角方向に接する画素 との距離を√2(単位)として隣接する境界画素間の距 離の総和を求める。

 $L_2 = N_0 + \sqrt{2}N_D.$ (N_0 は水平・垂直方向の連結数であり、 N_D は 対角方向の連結数) (12)

どの定義を用いるかにより、当然、結果が異なってくる. 実際に図7に示す領域に対し、これらの定義を用いて測定 してみると、定義1(式(11))では、 $L_1 = 22$ となり定義2(式 (12))では $L_2 = 6 + 16\sqrt{2} \approx 28.6$ となった.

さらに精度よく求めるために、様々な補正式が提案されている¹⁶⁾. たとえば、 L_2 に補正係数 0.948 をかけた定義式 L_3 は次のようになる.

$$L_3 = 0.948 \left(N_0 + \sqrt{2} N_D \right). \tag{13}$$

また, 誤差の起因である輪郭の凹凸形状の過剰評価を防ぐ ため, 輪郭に平滑化処理を施した後, 周囲長を計測するとい う方法もある. ただし, 平滑化により, 本来抽出すべき特徴 を除去するという懸念もあるため, 適用の際は平滑化のレベ ルに注意が必要である.

いずれの定義を用いるにせよ,解析対象の性質や分解能等 を勘案し,最適なものを選択しなければならない.

図7 領域の周囲長. 灰色の画素を境界画素とする. 定義1(式 (11))による周囲長の計測値は, $L_1 = 22$ であり,定義2(式 (12))による計測値は $L_2 = 6 + 16\sqrt{2} \approx 28.6$ である.

4. 手動計測による画像情報の定量化

画像中の解析対象の特性を定量化する場合は、まずその存 在領域を切り出してくる必要があり、これを実現するものが セグメンテーション処理であった.しかし、上にも述べたが、 自動セグメンテーション手法の適用対象は限られており、 様々な画像データに対応できるような汎用性や頑健性に乏し い.そこで、現状では、(1)解析者が対象を認識し、(2)手 動操作によって対象を切り出し、(3)切り出された領域の特 徴を計測する、という手動操作に基づく定量化が実施される ことが多い.(2)の過程では、解析者がマウス等のポインティ ング・デバイスを用い、解析対象の輪郭をトレースし、閉じ た曲線を作成する.そしてその内部を埋め、ひとつながりの 領域を対象領域として切り出してくる.多くの場合、切り出 された対象領域は2値化表現されているため、(3)の過程は 計算機による自動処理が可能になる.

ただ,この処理の際,輪郭のトレースの正確さが定量化結 果に直接影響することは自明である.しかし,これまで,得 られた結果の精度やそれに含まれる誤差について,ほとんど 考慮されることはなかった.本節では,手動トレースによる 輪郭線抽出実験の実施結果に基づき,定量化操作に係る測定 誤差の評価を試みる.

本実験では実際の画像計測を想定し、2種類の図形の画像 データ(Sample1, Sample2)とそれらにノイズを重畳した 画像データ(Sample1_noise, Sample2_noise)を解析対象と して用意した(図8上段). これらの画像を計算機モニタで 表示し、被験者(15人)が同一の計算機環境のもと、マウ ス操作による、図形の輪郭トレースを実行した. トレースし た軌跡は一定幅の線として表示され、最終的に各図形の輪郭 抽出画像(2値化画像)として保存された. なお、本実験で はあらかじめ式(12)に基づき、Sample1 および Sample2 の 画像の周囲長を自動計測し、その結果を「真値」(Ground Truth)として用いた. Sample1 に対する真値は 429.20 であり、 Sample2 は 584.57 であった.

手動トレースによる輪郭線抽出画像は,程度の差はあるが 被験者ごとにぶれや特定の方向への偏りなどの誤差を含んで いた.まずは,平均化によるこの誤差の低減の度合いを確認

図8 手動トレースに基づく輪郭線検出.上段:解析対象画像と輪郭線抽出結果の平均化画像.下段:周囲長計測結果.平均値 ±標準偏差の値を示している (Sample1: 432.71 ± 3.77, Sample1_noise: 431.16 ± 13.89, Sample2: 589.38 ± 12.50, Sample2_noise: 608.71 ± 26.09, それぞれ N = 15).

した. 図8の各対象画像の下に、それに対する被験者全員 分の輪郭線抽出結果の平均化画像を示す.

Sample1 および Sample2 をトレースした平均化画像は、そ の輪郭が対象画像のそれに近似されていることがわかる。こ れは、偶然的に発生するゆらぎ等の誤差が平均化によりキャ ンセルされたことを表す. これに対し, Sample1 noise およ び Sample2 noise を対象とした結果は、平均化されてもなお 輪郭線に位置ずれがあり、誤差がより大きかったことがわか る.これは、ノイズにより対象画像の輪郭線が不明瞭になっ ているため、その特定に対する被験者の認識に差異が生じて いるためと考えられる.

次に、このような個人誤差を含んだ輪郭線抽出画像の周囲 長を計測した. 図8下段には式 (12) を用いて計測した結果 (平均値±標準偏差)を示す.いずれの結果も周囲長の平均値 (グラフ中の黒丸で示す)は、真値(点線で示す)よりも大き い.これは、手動トレースによる輪郭線は誤差として局所的 に凹凸が生じているため、それらの距離を評価した周囲長と しては、真値よりも長くなる傾向があることを示す. さらに、 標準偏差はノイズのある画像でより大きくなっていることが わかる、対象画像の輪郭線の不明瞭さによって、被験者の輪 郭線の決定に大きなばらつきがあることが評価されている.

Sample1	0.99
Sample1_noise	2.03
Sample2	1.44
Sample2_noise	4.67

表1 平均誤差率 [%]

さらに輪郭抽出画像の周囲長の測定値を v_M ,真値を v_{GT} と 表し、以下の式を用いてこれらの誤差率(ε)を計算した.

$$\varepsilon = \frac{\left| v_M - v_{GT} \right|}{v_{GT}} \times 100 [\%] \quad . \tag{14}$$

表1にそれぞれの画像に対する誤差率の平均値を示す.や はり、ノイズのない画像で誤差は小さくなり、ノイズが重畳 すれば誤差は増大している. また, Sample1 に比べ Sample2 の方が誤差が大きい (Sample1 noise に対する Sample2 noise の誤差も同様). これは、Sample2の方がトレースする輪郭 の距離が長いため、誤差が蓄積する傾向にあることを示して いる.

このような計測誤差を低減するためには、複数回の計測結 果や複数計測者の結果の平均が必要になる. また, 作業の標 準化も重要になってくる. 計測の手順や判断基準を明確にし, 再現性の担保された手動計測による定量化を実施することが 求められる.

5. おわりに

定量化を目的としたバイオイメージング研究においては、 その分野のひろがりに呼応し、ImageJ¹⁷⁾ やその関連ソフト ウェア¹⁸⁾ をはじめとして、様々な画像処理・解析ツールが 提供されている. 多様な選択肢が存在し、従来できなかった 解析手法の構築も可能になってきた. しかしその一方で、い かにそれらを便利に使いこなすかという、"how-to" ばかり が強調されている側面もある.繰り返しになるが、ソフトウェ アの内部処理をブラックボックスとして出力された定量化 データには、それに本来期待される客観性等の条件は付与さ れていない. それは本質的に目視に基づく主観評価結果と変 わるところはない. 定量化を指向するバイオイメージング研 究では、結果に至る全ての過程をクリアにしておくことが要 求される. このためには、ディジタル誤差等を考慮したうえ で、使用するアルゴリズムの詳細や計測手法の定義等を正確 に把握しておく必要がある.

他方,現段階の画像処理・解析ツールを用いても,実現が 困難な処理があることについて認識しておくことも重要であ る.画像処理として,最も重要になるのが,画像中から解析 対象を切り分けるセグメンテーション処理であったが,その 適用範囲は広いとはいえず,汎用性・頑健性のある処理の実 現はまだ先になるように思える.したがって現状としては, この処理には,解析者の関与が不可欠となり,手動操作によ る定量化が実施されることになる.この場合においても,解 析に係る様々な評価基準を明確にするとともに,計測誤差を 適切に評価し,結果に反映させることが必要である.

これまで、画像データは最終的な研究結果となり得た.しかし、定量化時代のバイオイメージング研究においては画像 自体が研究対象であり、それを科学計測の観点から処理する ことが要求される.本稿では、その基礎となる画像処理・解 析技術とその過程で生じるいくつかの誤差の問題について概 説した.

謝 辞

本稿の執筆にあたり,植物オルガネラデータベース (PODB3: The Plant Organelles Database 3)の画像を使用させ ていただきました.画像の使用についてご快諾いただいた, 当該データベース構築代表者の真野昌二博士(基礎生物学研 究所)に感謝いたします.また,4章の「手動計測による画 像情報の定量化」実験は、2014年12月10-12日の日程で開 催された,自然科学研究機構新分野創成センター・基礎生物 学研究所主催「生物画像データ解析トレーニングコース 2014」(https://is.cnsi.jp/biatc2014/)内で実施しました.被験 者としてご協力いただいた受講者の方々に感謝いたします.

文 献

- $1) \ \ {\tt http://www.bioimageinformatics.jp}$
- 2) http://www.q-bio.jp
- 3) http://ibep.ims.ac.jp/
- 4) http://podb.nibb.ac.jp/Organellome/podb3/result.php?id=71
- Haralick, R.M. and Shapiro, L.G.: Comput. Vis. Graph. Image Proc., 29, 100–132 (1985)
- 6) Pal, N.R. and Pal, S.K.: Pattern Recogn., 26, 1277-1294 (1993)
- Zhang, H., Fritts, J.E. and Goldman, S.A.: Comput. Vis. Image Und., 110, 260–280 (2008)
- 8) Ilea, D.E. and Whelan, P.F.: Pattern Recogn., 44, 2479–2501 (2011)
- Sahoo, P.K., Soltani, S. and Wong, A.K.C.: Comput. Vis. Graph. Image Proc., 41, 233–260 (1988)
- 10) Sezgin, M. and Sankur, B.: J. Electronic Imaging, 13, 146-168 (2004)
- Otsu, N.: IEEE Transactions on System Man Cybernetics, SMC-9, 62–66 (1979)
- http://podb.nibb.ac.jp/Organellome/bin/browseImage.php?ID= Image-k-yoshi_nibb.ac.jp-20060731091544
- 13) Kimori, Y., Baba, N. and Morone, N.: *BMC Bioinformatics*, 11, 373 (2010)
- 14) Loncaric, S.: Pattern Recogn., 31, 983-1001 (1998)
- 15) Zhang, D. and Lu, G.: Pattern Recogn., 37, 1-19 (2004)
- 16) Dorst, L. and Smeulders, A.W.M.: Comput. Vis. Graph. Image Proc., 40, 311–333 (1987)
- 17) http://imagej.nih.gov/ij/
- 18) Schneider, C.A., Rasband, W.S. and Eliceiri, K.W.: Nat. Methods, 9, 671–675 (2012)
- 19) Mano, S., Nakamura, T., Kondo, M., Miwa, T., Nishikawa, S., Mimura, T., Nagatani, A. and Nishimura, M.: *Plant Cell Physiol.*, 55, e1 (2014)