特集

環境セル その場観察

隔膜型環境制御試料室システム

福 嶋 球琳男[®],石 川 晃^b

[®]日本電子株式会社電子光学機器本部EMグループ,^b日本大学文理学部物理学科

キーワード: E-TEM, 環境 TEM, 環境制御, EC, 隔膜

1. はじめに

"「生のイカ」を電顕観察しようとしても、鏡筒内真空によ り干上がって「スルメ」になってしまい、さらに電子線の照 射を受るため「焦げたスルメ」が観察されるにすぎない"と いう比喩が古くより語られてきた.「生のイカ」を知らない 者は、観察結果(「焦げたスルメ」)から試料(「生のイカ」) が持つ機能はもちろん.本来の姿さえも想像できない.

先人達は「イカ」を「スルメ」にしない創意工夫に取り組 んできた.その方法を大別すると、①化学的あるいは物理的 に組織を固定処理する方法、②鏡筒内に湿潤ガス環境空間を 設け、その中に試料を支持する、いわゆる"環境 TEM (E-TEM)"*¹と呼ばれる方法の2つが挙げられる.後者は、 形態や構造を保持するばかりでなく、機能や活性をも保持で きるため、環境制御に伴う試料変化の様子のその場観察が可 能となる.

環境 TEM 開発のルーツは,電子顕微鏡が発明されて間も ない 1940 年代に見られる¹⁾. 1960 年代には試料周囲に導入さ れたガスによる試料コンタミネーションの制御効果が報告さ れている²⁾. 1970 ~ 80 年代には世界各地で様々なタイプの E-TEM システムが研究室レベルで開発され,試料と雰囲気ガ スとの反応のその場観察や,含水試料観察に応用された³⁾. その後,この分野の開発スピードは鈍ったが,1990 ~ 2000 年代にはナノテク分野の隆盛を背景に,触媒反応やナノ粒子 成長過程のその場観察を目的とした E-TEM システムが電顕 各メーカーで開発され,制御された環境場における試料変化 の過程をその場観察することへの機運が再び高まっている.

装置構成の面から環境制御型試料室(Environmental Cell: 以後 EC と記す)を大別すると,①環境ガスが EC 内から鏡

Kurio Fukushima and Akira Ishikawa: Film-sealed type Environmental Cell system

E-mail: fukusima@jeol.co.jp

^b〒156-8550 東京都世田谷区桜上水 3-25-40

E-mail: ishikawa@chs.nihon-u.ac.jp

筒内へ漏洩するのを防ぐため、ECの天井と床に相当する部 分に開けられた電子線通過用の窓孔に薄膜(以後、隔膜と記 す)を貼りつけた「隔膜型 EC」、②隔膜は貼らずに上記窓孔 を開け放したまま、同軸多段のオリフィスを EC の上下に組 み込み、それらによって形成される中間室内を独立した排気 系で真空排気して鏡筒内の高真空を維持させる「差動排気型 EC」, ③鏡筒内真空に影響を与えない程度の微量のガスを試 料に噴きつけるノズルを組み込んだホルダを利用する「ノズ ルホルダ型 EC」に分類できる.本項では隔膜型 EC の構造・ 特徴・応用について現状を述べる. 国内において隔膜型 EC を利用している主な研究グループは以下のとおりである. 1) 日本大学グループ⁴⁾:ガス雰囲気内での試料の電子線照射 損傷や隔膜の電子線透過率など、EC を利用する上で必要と なる各種基本特性の取得に取り組み、最近は高耐圧性隔膜や 密閉型 EC の開発を試みている (本稿の別項目に詳細を記す). 2) 帝京大学・東京農工大学グループ⁵⁾:ミオシン頭部のア クチン束縛サイトにマーカーとなる Au 微粒子を付与したミ オシン線維を試料にして,生体活性を保持させたまま観察し, アクチン投与前後におけるマーカーの位置変化から ATP 誘 起に伴うミオシンフィラメントの運動の解明を進めている. 3) 名古屋大学グループ⁶⁾: TiO₂に担持した金ナノ粒子を CO ガス(1%)を含む空気(375 Pa) 雰囲気中に置き,触媒 作用により金ナノ粒子の表面構造が変化する様子を高分解能

でその場観察している. 4) <u>北海道大学グループ⁷⁷</u>:水素貯蔵合金として利用される Mg 合金の機能解明を目的に,脱水素化された Mg 微粒子を 0.1MPa 水素雰囲気下で観察し,水素添加に伴う形態ならび に構造の変化を報告している.

2. 隔膜型 EC の装置構成

隔膜型 EC は、図1 に示す4つのバリエーションを持つ. ガス流路の無い最も簡単な構造の「密閉型」(図1-a)は、

^a〒196-8558 東京都昭島市武蔵野 3-1-2

²⁰⁰⁷年11月12日受付

^{*&}lt;sup>1</sup> "環境 TEM"は、含水試料観察への応用だけでなく、制御され た環境下における各種材料の成長過程、酸化還元過程などのその 場観察にも広く応用されている.

図1 隔膜型 EC のバリエーション. a) 密閉型, b) 圧力調整型, c) ガス貫流型, d) 多目的型

ガス環境下で観察する目的は達成できるが、その場で環境を 制御することができない. ガス流路を1本備えれば (図1-b)、環境圧力のその場制御は可能になるが、絶え間な くフレッシュなガスを供給することはできない. これを可能 にするには2本のガス流路を備える必要がある (図1-c). そして、制御されたガス環境下で観察中の試料に反応液を作 用させるなど、他の環境場を制御する機能を付加するには、 外部との接続通路をさらに増やす必要がある (図1-d).

隔膜型 EC を利用する上での基本的な装置システムの構成 は、以下の3つの要素からなる(図2).

1) <u>TEM 試料予備排気系改造</u>:通常,試料予備排気室内は排 気の開始とともに一気に減圧される.この時,大きな応力が かかり隔膜が破損することもある.この破損を防止するため に,試料予備排気系に排気速度を調整できるバイパス排気経 路を追加する*².

2) ガス雰囲気試料ホルダ:この試料ホルダの先端には,隔 膜型 EC を組み込むシーリングブロックが装着される.シー リングブロックには環境制御に利用する複数の細管が接続さ

図2 隔膜型 EC の装置構成

れ,それらは試料ホルダの軸内を通して他端がホルダ外部に 取り出されている.

3) <u>ガス環境調整装置</u>:隔膜型 EC の内部環境や試料予備排 気室内の圧力を調整するユニットであり、その内部には開閉 バルブ、微少流量調整バルブ、水蒸気補給用水槽などが組み 込まれている.これらをつなぐガス流路の一端には貫流ガス の供給源を接続し、他端に真空ポンプを接続する.そして、 シーリングブロック内に組み込まれた EC につながるガス貫 流用細管の外部接続端子をガス流路の途中に接続して、流路 が一つの系としてつながる.

3. ガス雰囲気試料ホルダ

汎用 TEM (200 ~ 400kV) 用に開発した3種類のガス雰囲 気試料ホルダについて,それらの構造と特徴を以下に述べる. 1) <u>ガス貫流用雰囲気試料ホルダ</u>(図3-a):シーリングブロッ ク内にガス雰囲気空間(EC)を確保するため、スペーサー を挟んで天井と床に相当する2枚のグリッドを配置しキャッ プで固定する.両グリッドの窓孔は隔膜で塞がれている.ま た,各パーツ間のガスシールにはバイトンOリングが使用 されている.試料は床に相当するグリッドに貼られた隔膜上 に支持する.ガス貫流用に,外部からホルダ軸内を通って EC に通じる2本の細管が配置されている.スペーサーの厚 さ(=ガス層の厚さ)を極限まで薄く(0.1mm以下)でき るため、比較的高い圧力環境を必要とする含水試料などの高 分解能観察に適している.EC 内の環境変化に伴う試料変化 の過程をその場観察することも可能である.

2) 液体注入用雰囲気試料ホルダ (図 3-b): ガス貫流用ホル ダとの違いはスペーサー(1mm 厚)がシーリングブロック 内に作り付けられている事と, EC につながる細管の数が 4

^{*&}lt;sup>2</sup> 高耐圧性隔膜を利用する際には、この改造は必ずしも要求されないが、安全性確保の立場からは改造するのが良い.

本に増えたことである. 試料は床となるグリッドに貼られた 隔膜上に支持する. 4本の細管の内の2本はガス貫流に用い, 注入する2種類の液体は残りの2本の細管先端に準備してお く. 各々の液体はその前後の圧力バランスの調整により全量 がガス雰囲気内で観察中の試料上に一気に注入される. ス ペーサー内にはろ紙の小片が設置され,余分な液をすばやく 吸い取る. 固体一液体あるいは2液間の反応過程のその場観 察に用いる. 同方式のホルダを利用した観察例として,写真 用ハロゲン化銀粒子の現像過程における還元銀成長の様子を 図4に示す.

3) 加熱雰囲気試料ホルダ (図 3-c): このホルダのシーリン グブロック内部にはワイヤヒーターを設置する電極端子が作 り付けられている. 試料はワイヤヒーターに付着支持する. EC につながる細管はガス貫流用に 2 本を備えている. バイ トン O リングを使用しているため,加熱温度の上限は 350°C である. S. Giorgio ら⁸は,本ホルダを利用し TiO₂ 粒子やカー ボン膜に付着させた Au あるいは Pd クラスターの構造や形 状が, H₂ あるいは O₂ 雰囲気中で変化する様子を高分解能観 察し,触媒作用の解明に取り組んでいる.

4. ガス環境調整装置

配管図を図5に示す. EC 内ガス雰囲気(圧力,流量)の 調整ライン(緑色),試料予備排気室の圧力調整ライン(赤色), 液体注入用ライン(青色)が組み込まれている.2つのガス 導入口を備え,雰囲気の切換が可能である.ガス導入ライン には水蒸気補給用の水槽が設置され,貫流ガスはフィルター を通し小さな気泡となってここに送り込まれる.水槽をバイ パスさせれば,乾燥ガスを EC 内に導入できる.排気系には ターボ分子ポンプが使われている.PC 制御による自動シー ケンスにより以下の操作が行える.

- 1. EC 内/試料予備排気室内の圧力・流量調整
- 2. 供給ガスの切換
- 3. 湿潤ガス環境と乾燥ガス環境の切換
- 4. EC 内の高真空排気
- 5. ガスの再貫流
- 6. 微量液体の注入

5. 隔 膜

隔膜は,隔膜型 EC を構成する最も重要な要素であり,その特性と作製の容易さが EC 観察の効率を左右する.要求される特性と,それを満たす隔膜の作製法について述べる.

5.1 隔膜に必要な特性

隔膜に要求される最も重要な特性は、電子線透過性と耐圧 性であるが、両者は背反する特性であり、双方の要求を満た すような材質と適切な厚さの選択が必要である.この他、観 察を妨げないためには無構造(無コントラスト)性が、そし て安定な観察のためには導電性、電子線照射耐性が要求され る.また、化学反応等のその場観察のためには耐薬品性が要 求され、さらに実用面からは作製の容易性が重要となる.

5.2 隔膜の作製法

深見らが開発したプラスチック・マイクログリッド (MG) を支持体とするカーボン隔膜⁹⁾は、電子線透過性に優れ、 高解像度観察を可能にしたが、MG のコントラストが試料構 造のコントラストに重なり、観察には支障となっていた. そ の後, MG の孔の周囲の形状を滑らかにしてカーボンを蒸着 し、最終的に MG を溶解除去することで、支持体のコント ラストを無くすことができた¹⁰⁾が、液体を注入して観察す る場合には膜の窪みに溜まる液体のコントラストが生じる難 点があった.これを解決するため、厚さ10~20nm 程度の フラットなカーボン薄膜で耐圧性能が 0.1 MPa 以上の隔膜の 作製法を開発した.その作製上の要点は以下の2点である. 1) 隔膜用保護膜の利用:作製過程でのカーボン膜の破損を避 けるために、スライドガラス上にトリアセチルセルロース (TAC) 膜を作製してその上にカーボンを真空蒸着し、TAC 膜 と一体化したカーボン膜を隔膜支持用のグリッドに貼ってか ら TAC 膜をアセトンで溶解除去してカーボン膜だけを残す. 2) 高真空での低速蒸着:厚さ 20nm 程度のカーボン膜を得 るには、カーボン棒の先端を長さ2mm 程度細くして尖らせ、 電流値 50A 以上で急速加熱して数秒間で蒸着すればよいが、 この方法で得られる耐圧性能は 0.04 MPa 程度であった. そ こで、カーボン棒の形状を改良することによって電気抵抗を 増し、併せて蒸発源からの熱拡散を抑えることにより、厚さ 20nm 程度で 0.1 MPa 以上の耐圧性を持つカーボン隔膜が得 られるようになった¹¹⁾.この時の蒸着条件は、加熱電流 30A 程度, 蒸着時間 30 秒程度である. 隔膜の作製とグリッ ドへの貼り付け手順の詳細は他4)に紹介されている.

通常の観察には厚さが約20nmの隔膜を使用しているが, 高解像度観察のためには,隔膜の厚さはできるだけ薄くする 必要がある. 川崎ら¹²⁾ は上記作製法を改良し,蒸着源から スライドガラスまでを円筒容器で囲み,容器壁で反射した カーボンを堆積させる方法により,厚さ8nm で0.1MPa 以 上の耐圧性能を持つ隔膜を作製している.後述の密閉型 EC はもとより,通常の隔膜型 EC でも0.1MPa 以上の高耐圧性 隔膜を用いれば操作性を大幅に向上させることができる.

5.3 膜厚の測定

カーボン膜の厚さは、光学濃度計でスライドガラス上の膜の透過光学濃度 D を測定し、カーボン膜厚 t の較正式

$$t(nm) = 110 \cdot D \tag{1}$$

を用いて求めている.較正式は水晶振動式膜厚計による測定, および電顕観察による折り曲げ法での膜厚測定により求めた もので,5nm ~ 50nm 程度の厚さ範囲で有効な方法である.

なお、膜厚 20nm の隔膜の電子線透過率は、加速電圧 100kV のとき、検出半角 1.5×10⁻²rad で 92%程度である.

5.4 隔膜支持用グリッド

隔膜を支持して EC の天井と床を構成するグリッドへの要 求項目としては、隔膜の耐圧性と視野の確保の観点から、窓 孔の大きさと数の最適化および、窓孔の配置の対称性が挙げ

図3 雰囲気試料ホルダ先端のシーリングブロックへ組み込む EC 構成部品. a) ガス貫流用, b) 液体注入用, c) 試料加熱用

図4 写真用ハロゲン銀粒子の現像過程のその場観察. ガス環境;乾燥空気8kPa, 現像液(CNK-4, 1:4)注入量;1.5mm³, a)注入前,b)現像液注入30秒後,c)1分後,d)2分後,e)3分後,f)4分後

図5 ガス環境調整装置

られる.これらの条件を満たすグリッドとして、図6に示 すような、直径 3.5mm、厚さ 0.2mm のりん青銅製の円盤の 中央部を窪ませて、直径 0.1mm の孔を7 個設けたものを用 いている. 左は隔膜を貼ったグリッドの写真である.

5.5 隔膜の耐圧性能検査

作製した隔膜を EC 観察に用いるには、事前に耐圧性能の 検査が必要となるので、0.1MPa以上の耐圧検査装置を製作 した. 図7にその模式図を示す. 真空ポンプ/コンプレッサー 兼用の小型ポンプを用いて、まず減圧口に設置した O リング (1) に隔膜を貼り付けた面を上側にしてグリッドを載せ、上 蓋を閉じる.減圧口を通してグリッドの下側空間を 0.02 MPa まで排気し、次いでグリッドの上側の小部屋をコンプレッ サーで 0.15 MPa まで加圧して、膜の上下に 0.13 MPa の圧力 差を与える、この条件で破損しない隔膜を観察に用いている、

6. 密閉型 EC

隔膜型 EC は試料環境の制御が可能なことが大きな利点で あるが、特別な試料ホルダと EC 環境調整装置、および顕微 鏡本体にガス漏れ対策を必要とする. しかし、EC 観察にお いては、単に含水試料の「生のままの状態」での観察や、微 粒子の液体中での分散状態の観察など、環境制御を必要とし ない場合も多い. このような目的には、隔膜型 EC のガス通 路を持たない簡単な構造の密閉型 EC を用いることができ る. 大気圧下で試料を密閉して、そのまま標準型の試料ホル ダに組み込めるのが密閉型の特長である.

6.1 密閉型 EC の構造と密閉性能

最も簡単な密閉型 EC は、隔膜を貼った2枚のグリッドで ガスケットを挟み、上からネジ蓋で締め付けてシールドする だけの構造であり、EC のガス層の厚さはガスケットの厚さ で決まるが、この厚さを 0.1mm 以下にするのは困難である. そこで、さらにガス層の厚さを減らすために、上下のグリッ ドの外側にOリングを置いて密閉する構造のECを開発し た¹³⁾.図8にその模式図と構成部品の写真を示す.ガス層 の厚さはスペーサーの厚さで決まり、0.0mmから0.25mm の範囲で変えることができる. EC は厚さ 3.5mm のシーリ ングブロック内に組立て、サイドエントリータイプのバルク 試料ホルダに組込んで用いている.

密閉型 EC では、大気圧下で密閉する場合、0.1 MPa 以上 の耐圧性能を持つ隔膜が必要であるが、試料ホルダの鏡筒へ の挿入も、通常の予備排気操作で行える.また、ガス通路を 備えた隔膜型の場合は隔膜の破損によるガス漏れ対策が必要 であるが、密閉型の場合には密閉されるガス量は1mm³程度 と極めて少量であり、万一漏れても電顕の真空に影響はない ので、漏れ対策が不要であり、通常の電顕でそのまま使用で きることも特長である.これまでの実験において、水滴が密 閉されてから数時間にわたって保持され、さらに水滴が移動・ 合体する様子のその場観察がなされており、密閉性能は実用 上十分であることが確認できている¹¹⁾.

6.2 密閉型 EC 内の圧力と解像度

先に述べたように、大気圧下で密閉してそのまま観察でき ることが、密閉型 EC の利点であるが、0.1 MPa のガス層で は厚さが 0.1mm 程度でも、解像度はかなり低下する。解像 度を向上させるには、ガス層の厚さを減らすか圧力を下げる 他ないので、圧力を下げてから EC を密閉する低圧密閉装置 を作製した、試料ホルダに組み込んだシーリングブロックに EC 構成部品を重ねて装置に挿入し、所要の圧力まで排気し た後に外部からネジ蓋を回して締め付けることにより密閉す

- O-ring (2)

図8 密閉型 EC の構成と構成部品

۲

0

図9 密閉型 EC による水層中のポリスチレン・ラテックス球の観察例(水層厚さの推定値:1.5 µm),加速電圧:200kV

る. これを大気圧下に取り出すと,隔膜に逆圧力が加わり, グリッドから剥離するおそれがあるが,グリッド表面にネオ プレンゴム(粘着剤:メッシュセメント)0.05%トルエン溶 液を塗布してから隔膜を貼ることにより,剥離を防ぐことが できる.

6.3 密閉型 EC 内のガス圧力および液層厚さの推定

密閉型 EC では EC 内圧力を直接測定することはできない ので、EC 自体の電子線透過率から圧力を推定する方法を用 いている. 隔膜型 EC を用いて、種々の空気層厚さおよび圧 力に対し、種々の開き角で電子線透過率 T_r を測定した結果、 隔膜の膜厚、空気層の厚さに依らず、 T_r の実験式は EC の mass thickness T_m に対して次式で表せることが確かめられ た¹⁴.

$$T_r = \exp(-\rho T_m) \tag{2}$$

ここで、検出開き角αに依存する吸収係数ρをあらかじめ 測定しておけば、T_rの測定により圧力Pは次式で求められる.

$$P = -(\ln T_r/\rho + 2n \cdot t)/n_g \cdot T_g \tag{3}$$

ここで, n, tは隔膜の密度と厚さ, n_g, T_g はガス層の密度 と厚さである.

この関係を気体だけでなく液体の極薄層を含む mass thickness の領域まで外挿すれば、液層の厚さを推定することも可能と考えられる. 蒸留水に懸濁したポリスチレン・ラテックス球 (0.314 µm) を観察した例を、図9に示す. 液

層の厚さは, EC の mass thickness 対電子線透過率の関係を 外挿して, 1.5μm と推定される.

7. おわりに

これまで,TEM はその高分解能性能を武器にして各種材 料の微細構造解明に貢献してきた.しかしながら,TEM の 宿命である鏡筒内の高真空環境は,生物試料をはじめとする 含水試料の自然状態での観察を拒んできた.これに立ち向か う研究者の長年の努力により,ハード,ソフトの両面におい て含水試料観察のための多くのハードルがクリアされ,近年 では汎用性のある隔膜型 EC が商品機として供給されるよう になり,また,簡便性の高い密閉型 EC の安定利用も可能と なった.観察・記録時の試料損傷回避法や高感度動画像記録 法などの関連技術と連携してこの技術を利用することで,生 物試料や各種機能性材料をより自然な状態に維持したまま, その機能や特性を解明・評価し,新たな知見を得ることが期 待される.

献

文

- 1) Abrams, I.M. and McBain, J.W.: J. Appl. Phys., 15, 607–609 (1944)
- 2) Heide, H.G.: J. Cell Biol., 13, 147-152 (1962)
- Butler, E.P. and Hale, K.F.: *in Glauert, A.M. (Ed.), Practical Methods in Electron Microscopy*, Vol. 9, Dynamic Experiments in the Electron Microscope, Elsevier/North-Holland Biomedical Press, AMSTERDAM, 1981, Chapter 5 and 6
- 4) 石川 晃: 顕微鏡, 39, 99-104 (2004)
- 5) 箕田弘喜, 稲吉悠里, 湯本史朗, 田之倉優, 小林孝和, 秋元 剛,
 杉 晴夫:日本顕微鏡学会 第 63 回学術講演会予稿集, 2007, p.
 96
- Kawasaki, T., Ueda, K., Tanaka, H., Tanji, T. and Ichihashi, M.: Microscopy and Microanalysis, 13 (Suppl. 2), 644CD-645CD (2007)
- Okudera, K., Shiomi, N., Hamada, K., Suda, T., Ohnuki, S., Kawai, Y. and Kojima, Y.: Proc. 16th Int. Micros. Congr., Sapporo, 2006, Vol. 3, p. 1981
- Giorgio, S., Sao Joao, S., Nitsche, S., Chaudanson, D., Sitja, G. and Henry, C.R.: *Ultramicroscopy*, 106, 503–507 (2006)
- Fukami, A. and Murakami, S.: J. Electron Micrisc., 28, supplement, S-41-S-48 (1979)
- 10) 福島球琳男, 深見 章:電子顕微鏡, 24, 20-32 (1989)
- Ishikawa, A. and Miyata, H.: Proc. China-Japan Joint Seminar on Atomic Level Characterization-2002, Guilin, 2002, p. 20–25
- 12) 上田浩大,川崎忠寛,長谷川準,丹司敬義,石川 晃:第67 回応用物理学会学術講演会2 (2007) 725
- Ishikawa, A.: Proc. 16th Int. Micros. Congr., Sapporo, 2006, Vol. 2, p. 984
- Ishikawa, A. and Miyata, H.: Proc. 8th Asia-Pacific Conf. Electron Microsc. (Kanazawa, 2004) 294–295