

新しい PEEM(光放出電子顕微鏡)を 求めて

PEEM and Its Future Challenge

朝倉清高

Kiyotaka Asakura

北海道大学触媒化学研究センター

要 旨 in situ 条件下で表面反応の時空間分布を観測できる PEEM 法に化学分析能を付与した EXPEEM (エネルギー 選別 X 線 PEEM) 法の開発を行った. 直線型エネルギー 分析器である Wien filter を用いて,収差を補正するため多 極子電磁場型 Wien filter を開発して,高感度化を実現し た. 現在, 簡易で扱いやすい装置を地域のチームワーク を生かして製品化する新しいプロジェクトを開始した.

キーワード:他極子 Wien filter, PEEM, EXPEEM, in situ

1. PEEM と EXPEEM

図1は、CO酸化反応時にPt (110)表面に形成された吸着種の時空間パターンである.このパターンは動き,自律して存在する²⁾.このパターンの観測は、PEEM (Photoemission electron microscopy:光放出電子顕微鏡)で観測されたものであり、観測に成功したG.Ertl先生は2007年ノーベル化学賞を受賞された³⁾. 1993年、PEEM研究の最盛期に、運良くErtl先生のもとに留学できた筆者は、PEEMをもちいたメゾ空間制御による表面反応制御の研究を行うことできた.PEEMは、触媒反応中の時空間パターンをin-situ(その場)で測定できるという画期的な方法であったが、仕事関数によってしか表面吸着種を区別できないという欠点もある.もし励起源としてX線を用いると、放出される光電子の運動エネルギー E_{km} は、X線の励起エネルギーhvからもともと電子がいた軌道の束縛エネルギー E_{kn} を差し引いたもの

$$E_{kin} = hv - E_B \tag{1}$$

であるので、光電子の運動エネルギー E_{kin} を選別して、結像することで、元素選別あるいは化学状態選別像を得ることができる。われわれはこれを EXPEEM(Energy filtered PEEM)とよび、実現を目指した⁴.現在 XPS と PEEM とを組み合わ

〒001-0021 札幌市北区北 21 条西 10 丁目 TEL/FAX: 011-706-9113
E-mail: askr@cat.hokudai.ac.jp
2013 年 6 月 28 日受付

図1 CO酸化反応中に Pt (1110) 表面上に発生する時空間パ ターンの PEEM 像

 O_2 , CO の圧力は $P_{02} = 4 \times 10^{-4}$, $P_{C0} = 4.3 \times 10^{-5}$ mbar 温度は 448 K であった¹⁾ ("Reprinted with permission from [S. Nettesheim, A. von Oertzen, H.H. Rotermund, G. Ertl, Journal of Chemical Physics, Vol 98, page 9977, (1993)). Copyright [1993], AIP Publishing LLC."].

図2 Wien filter の原理

せてエネルギー分析型 PEEM が実現している^{5.6)}. しかし, 半球型では,電子の軌道が曲がるので,顕微鏡の光軸を調整 するには不向きである.直線型のエネルギー分析器としては, 飛行時間型 (Time of Flight; TOF) と電磁場重畳型 (Wien filter: WF)型がある. TOF型はパルス光源を用いることで, 電子の速度により到達時間が違うことを利用してエネルギー 分析をするものである⁷⁾. 後者は,図2に示すように電場と 磁場を直交させて,電子に作用させ,下記に示す Wien 条件 を満たすとき電子が直進することを利用する⁸⁾.

$$\vec{F} = e(\vec{E} - \vec{v} \times \vec{B}) \tag{2}$$

電子が受ける力 \vec{F} は、電場 \vec{E} に比例し、磁場 \vec{B} と速度 \vec{v} のベ クトル積に比例する. eは電子の電気量である. したがって、 適当な速度 \vec{v} になったときに、 $\vec{F} = 0$ になり電子は直進する

図3 WF 出口における Wien 条件を満たした電子の収差図形(a) 非点補正,(b) 2 次収差補正,(c) 3 次収差補正¹²⁾

(Wien 条件). これ以外はすべて曲がり,WFの出口にエネ ルギー選別スリットを入れておくと電子エネルギー選別がで きるという仕組みである.図2にWFの原理を示した. WF 型エネルギー分析器の特徴として⁹⁾.

- 1. 直線配置
- 2. フーリエ成分を調整することで、収差補正が可能であること

3. 1 eV 以下のエネルギー分解能を実現できること があげられる. エネルギー分解能, ΔE, は

$$\Delta \mathbf{E} = \pi \frac{\mathbf{w}\phi_0}{\sqrt{2} L} \tag{3}$$

で与えられる.ここで、w,Lはスリット幅とスペクトル長で あり、 ϕ_0 は電子のフィルター中の運動エネルギー(パスエ ネルギー)である.

筆者が EXPEEM を WF で実現しようと企画した 1995 年 当時原田義也先生と市ノ川竹男先生が日本電子と協力して, WF を搭載した LEEM-MEEM (低速電子顕微鏡-メタステー ブル電子顕微鏡)を実現されていたので¹⁰⁾,この装置に励起 光源として X線を装着し,EXPEEM とすることができると 考えた.本稿では,筆者らが行ってきた WF型エネルギー分 析器を搭載した EXPEEM について,その原理と発展につい て述べたいと思う.

2. 収差補正 WF

WF型エネルギー分析器が実用化しなかった原因は、低倍率で感度が低いことにある.特に、内殻の光電子ピークは、 絶対的放出電子量が少ない.このため、図2でしめす単純な電極2極磁極2極のWien filterでは、電子蓄積リングの偏向電磁石からでる放射光よりさらに強力なUndulator光源を使っても、十数時間蓄積して、やっと像を得ることができる程度であった⁸⁾.低倍率の高感度化は、低倍から高倍まで、像を見ながら拡大率をあげていくWF法の特徴を生かすためには必要な技術である.低倍の高感度化を実現するためにはWien filterの取り込み角度を増やせばよいが、そのためには、Wien filter内に大きく広がる電子軌道を収差なく再び焦点に集めなければならない.収差を減らすには、多極子型WFに より、電磁場のフーリエ成分を調整することが必要である¹¹⁾. そこで、電磁極を12個有するWien filterを開発した.これ により、3次収差まで補正することで、広い光路を通っても 焦点位置で電子ビームが収束し、十分に収差を小さくするこ とができるようになった^{9,12)}. その条件を表1にまとめ、シ ミュレーションの結果を図3に示す.

$$e_{2} = \frac{\phi_{2c}}{\phi_{1c}} R_{0}, \ e_{3} = \frac{\phi_{3c}}{\phi_{1c}} R_{0}^{2}, \ e_{4} = \frac{\phi_{4c}}{\phi_{1c}} R_{0}^{3},$$
$$b_{2} = \frac{\psi_{2s}}{\psi_{1s}} R_{0}, \ b_{3} = \frac{\psi_{3s}}{\psi_{1s}} R_{0}^{2}, \ b_{4} = \frac{\psi_{4s}}{\psi_{1s}} R_{0}^{3}$$

ここで $R_0 = 2\phi_0 / \phi_{1c}$ で、 ϕ_{nc}, ψ_{ns} は、電場、磁場の円筒座標系におけるn次のフーリエ成分をあらわす.

さらに、空芯型コイルにし、電極と磁極を分離して、磁極 を真空の外に置くことで、軽量化と鉄心のヒステリシス除去 とコイルの冷却を効率的に行うことができるようにした.し かし、この改良により、WFの入り口と出口で、境界条件が 異なるため、電場と磁場の1次成分の立ち上がりが一致しな くなり、電子が曲げられてしまうという問題を発生させた. そこで、図4に示すように電極の形状及び長さを調整する ことで、出入り口におけるこの二つの成分を合わせた^{13,14)}. こうして、図5に示すシャープな像を得ることが出きるよ うになった.図5はTa基板上に、大きさ10µ角のAuのア イランドを蒸着し、EXPEEMで観測したものである.X線 源は回転対陰極を使用した.Wien filter を通過する電子のエ ネルギーを変化させることで、図5の下にあるスペクトル

表	1	Aberration	correction	conditions

Reduced Fourier components	非点補正 (Condition A)	2 次収差補正 (Condition B)	3 次収差補正 (Condition C)
e_2	-0.250	-1	-1
b_2	0	-0.75=(-3/4)	-0.75=(-3/4)
e_3	0	0.375 (=3/8)	0.563
b_3	0	0	0.188
e_4	0	0	-0.180
b_4	0	0	0

図5 12極 Wien filter 付き PEEM により測定したエネルギー選別像(EXPEEM 像)

を得た. Au 4f (88 eV) と Ta 4f (24 eV) のピークに Wien filter のエネルギーを合わせて,エネルギー選別像を測定し たのが,右の2つの図になる. Au4f を選別すると Au が明る く現れ, Ta を選別すると Au が相対的に暗くなる. 12 極 WF の明るさは,従来型の数百倍となったのでこの選別像の取得 は放射光を使わず,実験室 X 線源で,数十分で達成した. ただ,問題は, 12 個の電場と磁場を制御することで,数多 くの電源が必要なことである.

X線, UV

3. 結 語

現在,ほとんどの PEEM は外国製である.日本には,世 界最先端の電子顕微鏡の技術力はあり,PEEM に関しても 国産のものがあったにもかかわらず,海外に比べ採算が合わ ないため,日本ではほとんど作られなくなった.ナノテク技 術の基盤であるこうした計測技術の伝承が困難となっている ことは、将来への不安材料である. 国内の PEEM 製作拠点 を構築のため、北海道に地域コンソーシアムを立ち上げ、新 たな PEEM プロジェクトを開始している. 要望に応じた PEEM (テーラメード)の生産と世界唯一の方法一例えば溶 液 PEEM、立体像 PEEM などの開発を図っている. また電 極の 8 個まで数を減らした多極子 WF を試作し、電源を減ら すことでコストダウンと扱いやすさを増し、汎用の EXPEEM の実現を図った. こうした取り組みにより、地域 雇用の創出と技術の伝承を目指している.

謝 辞

Та

1440

本研究は、様々な外部資金の援助により行われた. JST-CREST "単一原子分子での反応制御"、"ナノ構造制御触媒"、 文科省 振興調整費 "産学官の共同研究の効率推進", JSPS 科学研究費 重点領域研究 "傾斜機能材料" 基盤研究 (C) 白金表面層 subsurface 酸素の挙動と飽和炭化水素の活性化 基盤研究(B)"X線光電子顕微鏡法による高機能微細加工 表面触媒の開発と物性研究"萌芽研究"マイクロエレクトロ メカノキャタリストの創製"挑戦的萌芽研究"固液界面光電 子分光法の開発と電極反応への応用"経産省"地域新生コン ソーシアム研究開発事業"北海道大学"自然免疫のナノ領域 での機能解明"

ここに感謝したい.また以下の先生方,研究者から様々な ことを教わり,学生さんと共同研究を行い,ここまで来た. あらためて,感謝したい.

Prof. G. Ertl, Prof. H.H. Rotermund, Prof. J. Lauterbach (FHI-MPG), 岩澤康裕先生, 山口良隆博士, 高草木達博士 (東京大学), 安福秀幸博士, 新美大伸博士, 大南祐介博士, 堤哲也氏, 宮本剛士博士, 津野勝重先生 (北海道大学), 境悠治博士, 嘉藤誠博士, 工藤政都博士 (日本電子) 宮崎晃太朗, 菅育正 (菅製作所), 武藤正夫 (北海光電子), 内藤俊雄先生 (徳島大学)

文 献

- Nettesheim, S., von Oertzen, A., Rotermund, H.H. and Ertl. G.: J. Chem. Phys., 98, 9977 (1993)
- Rotermund, H.H., Engel, W., Kordesch, M. and Ertl, G.: *Nature*, 343, 355 (1990)

- 3) Ertl, G.: Angew. Chem. Int. Ed. 41, 3524 (2008)
- Asakura, K., Niimi, H. and Kato, M.: Advances in Imaging and Electron Physics, 162, 1–43 (2010)
- Schmidt, T., Groh, U., Fink, R., Umbach, E. Schaff, O., Engel, W., Richter, B., Kuhlenbeck, H., Schlogl, R., Freund, H.J., Bradshaw, A.M., Preikszas, D., Hartel, P., Spehr, R., Rose, H., Lilienkamp, G., Bauer, E. and Benner, G.: *Surf. Rev. Lett.*, 9, 223–232 (2002)
- 6) Grzelakowski, K.: Ultramicroscopy, 116, 95-105 (2012)
- Spiecker, H., Schmidt, O., Ziethen, C., Menke, D., Kleineberg, U., Ahuja, R.C., Merkel, M., Heinzmann, U. and Schoenhense, G.: *Nucl. Instrum. Methods*, 406, 499–506 (1998)
- Yasufuku, H., Ohminami, Y., Tsutsumi, T., Asakura, K., Kato, M., Sakai, Y., Kitajima, Y. and Iwasawa, Y.: *Chem. Lett.*, 31, 842–843 (2002)
- Asakura, K., Niimi, H. and Kato, M.: Adv. Imag. Elect. Phys., 162, 1–43 (2010)
- Harada, Y., Yamamoto, S., Aoki, M., Masuda, S., Ichinokawa, T., Kato, M. and Sakai, Y.: *Nature*, **372**, 657–659 (1994)
- 11) Kato, M., Doctor, The University of Tokyo, Tokyo (1997)
- 12) Niimi, H., Chun, W.J., Suzuki, S., Asakura, K. and Kato, M.: *Rev. Sci. Instrum.*, 78, 063710 1–8 (2007)
- 13) Miyamoto, T., Wada, T., Niimi, H., Suzuki, S., Kato, M., Kudo, M. and Asakura, K.: *Jpn. J. Appl. Phys.*, 51, 046701 1–7 (2012)
- 14) Niimi, H., Asakura, K., Chun, W-J., Kato, M., Kudo, M.: Japan, JP 2005-93241 (2005)