出芽酵母を用いたエンドサイトーシス 機構のイメージング解析

Live-Cell Imaging of Endocytosis in the Budding Yeast

+ 島 純 子^a, + 島 二 朗^{b*} Junko Toshima and Jiro Toshima

^a早稲田大学理工学術院創造理工学部 ^b東京理科大学基礎工学部生物工学科

- 要旨出芽酵母は分泌やエンドサイトーシスなどの細胞内輸送 経路の研究の優れたモデル生物である.従来,出芽酵母 を用いた研究は変異体の作成,原因遺伝子の同定といっ た順遺伝学が主体であったが,近年の蛍光顕微鏡技術の めざましい進歩は,変異体のイメージング解析による表 現型解析といった逆遺伝学の研究を可能にしている.本 稿では、ライブセルイメージングによる出芽酵母のエン ドサイトーシス経路の解析法について紹介する.
- キーワード:出芽酵母, エンドサイトーシス, クラスリン, イメー ジング, EH ドメイン

1. はじめに

エンドサイトーシスは様々な細胞外の物質を細胞内へと取 り込む機構であり、栄養物質の摂取、免疫応答機構、細胞外 シグナルの下方制御、病原ウィルスの細胞内への感染など多 くの生命現象に関与している. エンドサイトーシスは直径約 50 nm 程度の微細な膜小胞により仲介される現象であるた め、初期のエンドサイトーシス研究は電子顕微鏡による形態 学的な手法が主であった.エンドサイトーシスは1964年に、 Roth らによる電子顕微鏡を用いた哺乳類細胞の観察により、 湾曲した細胞膜構造として初めて同定された¹⁾.また、エン ドサイトーシス部位には、クラスリンタンパク質により多角 形の格子状の構造が形成されることが明らかにされた²⁾. そ の後,出芽酵母を用いた遺伝学的解析により,数多くのエンド サイトーシス関連タンパク質が同定され、これらの多くが哺 乳類細胞においてもエンドサイトーシスの制御因子として働 いていることが明らかにされた^{3,4)}. しかしながら, これらの タンパク質がどのように相互作用し、湾曲した細胞膜、および クラスリン被覆小胞の形成を行っているのかについては不明

^b〒125-8585 東京都葛飾区新宿6丁目3-1 * TEL: 03-5876-1717 E-mail: jtosiscb@rs.noda.tus.ac.jp 2013年9月17日受付 な点が多かった.エンドサイトーシス経路におけるタンパク 質問相互作用の解明のブレークスルーとなったのは,2003年 のDrubin らの研究である.彼らは蛍光顕微鏡を用いたライ ブセルイメージングにより,エンドサイトーシス関連タンパ ク質の動態を明らかにした^{5,6)}.これまでに出芽酵母におい て,60を超えるエンドサイトーシス関連タンパク質が同定さ れているが,近年のライブセルイメージング解析を中心とし た手法により,これらのタンパク質間の相互作用や,エンド サイトーシスにおける役割が次々に明らかにされている⁴⁾.

2. 出芽酵母のエンドサイトーシス経路

エンドサイトーシス過程は全体として1~2分程度の短い 現象であり、特に細胞膜の陥入からクラスリン被覆小胞の細 胞内への輸送の段階は、約15秒の間に起こる非常に早い現 象である(図1). エンドサイトーシス過程は大きく3つの 段階に分けることができる⁴⁾. 第一段階では初期被覆タンパ ク質が細胞膜上に集積する. これらの中には、 クラスリンタ ンパク質のほか、ユビキチン結合タンパク質である Edelp、 F-BAR ドメインを持つタンパク質である Svp1p などが含ま れており、初期のクラスリン被覆ピットの形成を行っている. この初期過程において、エンドサイトーシスの積み荷となる 膜タンパク質のクラスリン被覆ピットへの移動も起こる". 第二段階では、後期被覆モジュールと言われるタンパク質群 が、既に形成されているクラスリン被覆ピットに集積し、ク ラスリン被覆の成熟を行う. この中には、Pan1p/End3p/Sla1p 複合体や WASP/Myo タンパク質などが含まれる. Pan1p は Arp2/3 複合体の活性化因子であり、Ark1p/Prk1p キナーゼに よるリン酸化により、エンドサイトーシス部位におけるアク チン重合の制御とともに、クラスリン被覆の解離を制御して いる⁸⁾. また, WASP/Myo タンパク質の中の Las17p, Myo3/5p も Arp2/3 複合体の活性化因子であり、第三段階におけるク ラスリン被覆小胞の形成を仲介する。第三段階では、アクチ ンの重合による膜小胞の形成と切り離し、被覆の解離、小胞 の細胞内への輸送が起こる.この段階では、Arp2/3 複合体 の一過的な活性化による細胞膜の陥入と、Rvs161p/Rvs167p 等によるクラスリン被覆小胞の細胞膜からの切り離しが起こ る 6).

これら各段階におけるタンパク質の動態は、多くの研究に おいて、ライブセルイメージングにより詳細に解析されてい る. それらによると、第一段階の初期のクラスリン被覆ピッ ト形成段階は約60~135秒とそれぞれのエンドサイトーシ ス部位において大きな差がみられる(図1). これに対して、 第二段階以降の過程は非常に規則正しく起こる^{4,9)}. つまり、 一度後期被覆モジュールのタンパク質群がエンドサイトーシ ス部位へとリクルートされると、その約20秒後にはアクチ ン重合が開始され、小胞の形成と細胞内への輸送が完了する. 初期被覆タンパク質が細胞膜に集積する機構についてはまだ 全く分かっていないが、細胞膜内の電荷をもった脂質が関与 しているのではないかと考えられている. クラスリン被覆小

図1 出芽酵母のエンドサイトーシスの模式図 エンドサイトーシス過程におけるタンパク質局在の時間変化を 示す. 図上のタイムバーは後期被覆タンパク質がエンドサイ トーシス部位にリクルートされる時間を基準にしている. 詳細 については本文を参照.

胞は細胞内に取込まれると、速やかに被覆タンパク質を解離 し、初期エンドソームへと融合する.

エンドサイトーシスを観察する蛍光顕微鏡システムの 概要

エンドサイトーシス小胞は約 50 nm と非常に小さい構造 であり、その中で起こるタンパク質構成の変化も非常に早く 起こる.このため,エンドシトーシス部位での複数のタンパ ク質の動態を観察するためには、フィルターホイール等によ る観察波長の切り替えでは間に合わず、異なる2種類の蛍光 波長の同時観察が可能である蛍光顕微鏡システムが必要であ る. 私達の研究室では、オリンパスの倒立型顕微鏡に二光源 落射蛍光投影管(IX2-RFAW)と、二波長同時観察ユニット (DualView ユニット、日本ローパー社)を取り付けたシステ ムを採用している(図2). 蛍光タンパク質にはGFPと mRFPを使用し、2波長同時励起用フィルターとダイクロッ クミラーにより励起されるこれらの蛍光を二波長同時観察ユ ニットにより分光し、観察する.システム全体の制御はモレ キュラーデバイス社の MetaMorph により行う. このような システムを用いて、対象のタンパク質がエンドサイトーシス 部位へ現れる、もしくは解離するタイミングの解析や、目的 のタンパク質をコードする遺伝子の変異によるエンドサイ トーシスへの影響の解析等が可能になる.

4. エンドサイトーシスタンパク質の動態解析法

図3にエンドサイトーシスの後期被覆タンパク質の一つ である Sla1p とアクチン制御因子である Abp1p の同時二重色 ライブセルイメージングの例を挙げる. 出芽酵母において, エンドサイトーシスは図3A に示すように細胞膜周辺に"点 状"に観察される. Sla1p と Abp1p は同じクラスリン被覆小

図2 エンドサイトーシスの観察用の顕微鏡システムの概略図 オリンパスの倒立型顕微鏡(IX2-81)に緑色,赤色の二重同時 撮影用の装置を付属.詳細については本文を参照.

胞で働くタンパク質であるが、局在パターンは少し異なる。 これは、これらのタンパク質が細胞膜に現れるタイミングと その部位に留まる時間が異なるためである. 図 3B は図 3A の細胞の母細胞部位について、2秒間隔で撮影したモンター ジュ写真を示している.異なる色の矢頭は異なるエンドサイ トーシス部位を示しており、白の矢頭で示したエンドサイ トーシス部位では、まず2秒目の写真において Sla1p が現れ、 24 秒目の写真で Abp1p が現れている. このエンドサイトー シス部位における各タンパク質の出現するタイミングは、目 的のエンドサイトーシス部位のみを切り抜いたモンタージュ 解析(図 3C)を行うことで正確に調べることができる. さ らに、エンドサイトーシス部位の断面のキモグラフ (Kymograph) を作成することにより、クラスリン被覆小胞 が細胞内へと取込まれる動きを調べることができる (図 3D). 図 3E は Sla1p および Abp1p のエンドサイトーシ ス部位への滞在時間(patch lifetime)を示しており, Sla1p が 32.3 ± 5.8 秒、Abp1p が 13.8 ± 1.9 秒 で あ る. ま た. 図 3F では Slalp および Abplp の蛍光強度の変化と細胞膜か らの移動距離を示している. 濃緑で示した Slalp の蛍光強度 はエンドサイトーシス部位に現れてから徐々に増加し、ピー クに達した後急速に消失する. 黄緑で示す Sla1p の移動度と 比較すると、Sla1pの蛍光強度がピークに達するとほぼ同時 に Sla1p の移動度が増加することが分かる. このことは, Sla1p はクラスリン被覆小胞過程において、次第にその量を 増やし、小胞が細胞膜から切り取られた直後に小胞膜から解 離することを示している.また, 赤で示す Abp1p については, 小胞の細胞内への移動の直後に蛍光強度がピークに達するこ とが分かる. さらに, Abp1p の動きはエンドサイトーシス小 胞の動きを反映しており、その動きをトラッキングすること ができる(図3G). このように、エンドサイトーシスの同 時二重色ライブセルイメージングにより得られたデーターを 解析することにより、エンドサイトーシス関連タンパク質が エンドサイトーシスの過程においてどのように機能している かを予測することができる.

図3 エンドサイトーシスのデーター解析の例 (A) 野生型細胞における Sla1-GFP, および Abp1-mRFP の局在. Sla1-GFP と Abp1-mRFP を発現する細胞を YPD 培地で対数増 殖期まで培養後、緑、赤の蛍光を同時に撮影. Bar, 1 µm. (B) 図Aにおける母細胞のモンタージュ写真. 二重色同時撮影し た写真を2秒ごとに示す. 図中の異なる色の矢頭は異なるエン ドサイトーシス部位を示す. (C) 図Bにおける白色の矢頭の エンドサイトーシス部位のモンタージュ写真. Sla1-GFP の動 態を上段に、Abp1-mRFPを中段に、重ね合わせた図を下段に 示す. 各フレーム間の時間は2秒. (D)図Cのエンドサイトー シス部位のキモグラフ.(E) Sla1-GFP,および Abp1-mRFP の エンドサイトーシス部位への局在時間. 50 サンプルから得ら れたデーターの平均値とエラーバーで示す. (F) Sla1-GFP お よび Abp1-mRFP のエンドサイトーシス部位における蛍光強度 の変化と移動距離.濃緑、Sla1-GFPの蛍光強度の変化;黄緑、 Sla1-GFPの最初にエンドサイトーシス部位に現れた部位から の移動距離;赤、Abp1-mRFPの蛍光強度の変化;淡赤、Abp1mRFP の最初にエンドサイトーシス部位に現れた部位からの移 動距離. 左縦軸は各蛍光度の最大値を1.0とした相対値を示す. 右縦軸は移動距離を示す. (G) Abp1-mRFP の動態のトラッキ ングの例.緑丸と赤丸は始点と終点を示す.黒点は0.5秒ごと の Abp1-mRFP の位置を示す. 点線は細胞膜の位置を示す.

5. 二重色ライブセルイメージングによるエンドサイトー シスにおける EH ドメインの機能解析

出芽酵母において、ライブセルイメージングがその真価を 表すのは変異体解析においてである.出芽酵母は1倍体(ln) で生育できることから、突然変異体および遺伝子ノックアウ トを容易に作成することができる。次に、エンドサイトーシ ス関連タンパク質に見られる EH ドメインについて、その変 異体を用いた二重色ライブセルイメージングにより解析を 行った例について紹介する. EH (Eps15 homology domain) ドメインは哺乳類の Eps15 タンパク質の N 末端領域に存在 する100アミノ酸程度のドメインであり、クラスリン被覆の 一部である AP-2 複合体の結合因子として同定された^{10,11)}. このドメインは出芽酵母から哺乳類細胞にいたる多くの生物 間で保存されており、特にエンドサイトーシスに関わるタン パク質に多く見られる。出芽酵母ではPan1p、End3p、および Edelpの3つのエンドサイトーシス関連タンパク質に見ら れ、それぞれ複数個の EH ドメインを有している (図 4A)¹²⁾. 図 4B には EH ドメイン内で非常によく保存された配列を示 しているが、この中の Trp 残基は、EH ドメインの結合配列 の一つである NPF モチーフの認識に必要とされる¹³⁾. 私達 はこの EH ドメインの Trp 残基に変異を入れた際に、クラス リン被覆小胞の形成にどのような影響を与えるかを調べた⁹. 図5は各変異体におけるSla1p, Abp1pの動態と野生型細胞 との比較を示している. 図 5A は Pan1p と End3p の EH ドメ

図4 EHドメインを介したエンドサイトーシス関連タンパク 質間の相互作用

Pan1p, End3pは2つ, Edelpは3つのEHドメインを有する. Pan1p, Sla1p, End3pは安定なPan1p複合体を形成しており, Edelpと遺伝的な相互作用を持つ. EHドメインはEnt1/2pや Yap180pなどに見られるNPFモチーフと結合し, クラスリン と間接的に結合している. (B) Pan1p, End3p, Edelp, Eps15 のEHドメインの比較. 黒い部分は保存されたアミノ酸を示す.

図5 Pan1p, End3pのEHドメイン変異によるエンドサイトーシスへの影響

(A) 野生型細胞および EH ドメイン変異体における Sla1-GFP, および Abp1-mRFP の局在とキモグラフ. Sla1-GFP, Abp1mRFP を発現する細胞を YPD 培地で対数増殖期まで培養後, 緑,赤の蛍光を同時に撮影. Bar, 1 μ m. (B) 野生型細胞お よび EH ドメイン変異体における Sla1-GFP のエンドサイトー シス部位における蛍光強度の変化と移動距離. (C) Sla1-GFP, および Abp1-mRFP のエンドサイトーシス部位への局在時間. 50 サンプルから得られたデーターの平均値とエラーバーで示 す. 各データーは文献9より一部転載.

イン二重変異体における Sla1p、Abp1p の局在を示している が、これらは野生型細胞の場合と同様にエンドサイトーシス 部位へ局在する.しかしながら、キモグラフおよびライフタ イムを見ると、Pan1p と End3p の二重変異体では、Sla1p の ライフタイムは非常に増加していることが分かる(図 5B, C).これに対して、エンドサイトーシス部位でのアクチン の重合マーカーである Abp1p の動態は野生型と変異体細胞 において大きな違いは見られない(図 5C).この結果は、 EHドメインがクラスリン被覆小胞の成熟過程において機能 していることを示唆している.このように、エンドサイトー シスのライブセルイメージング解析は研究対象とするタンパ ク質がエンドサイトーシスのどの過程においてリクルートさ れ、またその機能が失われたとき、エンドサイトーシスにど のような影響を与えるのかを調べるのに非常に有効な方法で ある.

6. おわりに

近年のめざましい顕微鏡技術の発達により,非常に小さな 生物である出芽酵母におけるライブセルイメージング解析が 可能になった.これにより,今まで技術的な問題により,明 らかにできなかった様々な生命活動の分子機構を明らかにで きるようになった.最近では,従来の顕微鏡の限界よりさら に高い解像度を持つ超解像顕微鏡システムや,新しい電子顕 微鏡技術も次々と開発が進められている.イメージング解析 は時間分解能と空間分解能との戦いであり,今後さらなる顕 微鏡システムの開発を大いに期待したい.

謝 辞

本執筆へのご助言を賜りました宮崎大学医学部解剖学講座 教授,澤口朗先生に深く感謝をいたします.

献

1) Roth, T.F. and Porter, K.R.: J. Cell Biol., 20, 313-332 (1964)

文

- Crowther, R.A., Finch, J.T. and Pearse, B.M.: J. Mol. Biol., 103, 785–798 (1976)
- Engqvist-Goldstein, A.E. and Drubin, D.G.: Annu. Rev. Cell Dev. Biol., 19, 287–332 (2003)
- 4) Weinberg, J. and Drubin, D.G.: Trends Cell Biol., 22, 1-13 (2012)
- 5) Kaksonen, M., Sun, Y., and Drubin, D.G: Cell, 115, 475-487 (2003)
- Kaksonen, M., Toret, C.P. and Drubin, D.G.: Cell, 123, 305–320 (2005)
- 7) Toshima, J.Y., Toshima, J., Kaksonen, M., Martin, A.C., King, D.S. and Drubin, D.G.: *Proc. Natl. Acad. Sci. USA*, **103**, 5793–5798 (2006)
- Toshima, J., Toshima, J.Y., Martin, A.C. and Drubin, D.G.: *Nat. Cell Biol.*, 7, 246–254 (2005)
- Suzuki, R., Toshima, J.Y. and Toshima, J.: Mol. Biol. Cell, 23, 687– 700 (2012)
- Di Fiore, P.P., Pelicci, P.G. and Sorkin, A.: *Trends Biochem. Sci.*, 22, 411–413 (1997)
- Santolini, E., Salcini, A.E., Kay, B.K., Yamabhai, M. and Di Fiore, P.P.: *Exp. Cell Res.*, 253, 186–209 (1999)
- 12) Boettner, D.R., Chi, R.J. and Lemmon, S.K.: Nat. Cell Biol., 14, 2–10 (2012)
- 13) Paoluzi, S., Castagnoli, L., Lauro, I., Salcini, A.E., Coda, L., Fre, S., Confalonieri, S., Pelicci, P.G., Di Fiore, P.P. and Cesareni, G.: *EMBO J.*, 17, 6541–6550 (1998)