新環境制御型走査電子顕微鏡と 生きている生物の観察

New Environmental Scanning Electron Microscope and Observation of Live Nature

ヴィレェム ネヂェラ[®], エヴァ チラリッカヴァ[®], 塩尻 詢^b

Vilém Neděla, Eva Tihlaříková and Makoto Shiojiri

^aチエコ共和国 科学院 科学機器研究所 ^b京都工芸繊維大学

- 要 旨 科学機器研究所で開発した環境走査電子顕微鏡AQUASEM IIは、後方散乱電子をYAG:Ce³⁺ scintillation 単結晶で、 二次電子(SE)を静電分離器付イオン化SE 検出器、イ オン化SE 検出器、あるいは、新開発の走査電子顕微鏡・ 環境走査電子顕微鏡兼用 scintillation SE 検出器で検出す る. これらの検出系と特別に設計した試料室差動排気・ 加湿系を装備し、従来困難とされた条件下での半導体な どの試料や生きた状態にある生物の、その場あるいは動 的その場観察を可能にした。
- キーワード:環境制御型走査電子顕微鏡, 生きた生物試料, その 場観察, 電子信号検出器, 差動排気試料室

1. はじめに

生きた状態で生物試料を観察することは電子顕微鏡最大の 夢の一つである.しかし,生物試料は,化学固定や乾燥^{1,2)}, 導電性薄膜による表面スパッターコーテング³⁾,あるいは急 速凍結⁴⁾などの処理をして,真空中で電子照射の下で透過電 子顕微鏡(TEM)あるいは走査電子顕微鏡(SEM)観察す るのが常である.帯電の問題を克服し,自然状態で試料を観 測する可能性に近づくために,環境型走査電子顕微鏡(environmental scanning electron microscope; ESEM)^{5,6)}のように 電子顕微鏡中になんらかのガス雰囲気を設ける試みがなさ れ,種々の環境雰囲気中での試料観察に関して,生きた生物 試料の最初の簡単な観察を含め,数多くの報告がある^{7~18)}.

しかし,生物試料の長時間の観察は電子線照射の影響に よって制限される.ESEM 試料室の高圧気体は入射一次電子 (Primary Electron; PE)の散乱に関わる問題を惹き起こして

^a Institute of Scientific Instruments of the ASCR, v.v.i., Brno 624 64, Czech Republic E-mail: vilem@isibrno.cz 2013 年 8 月 30 日受付 検出 s/n 比を下げるので、検出器の設計と動作について特別 な配慮が必要になる。例えば、Everhart-Thornley 検出器は シンチレーターの導電層上に数 kV(通例 +10 kV)の電位を 付加するために、ESEM の二次電子(SE)検出のために用 いることはできない。

本報告では,新たに設計開発した電子信号検出系,試料室 差動排気・加湿系を装備した非市販 ESEM について紹介す る. この装置は生きた小動物の5分間その場動的観察を可能 にした¹⁸⁾.

2. AQUASEM II 顕微鏡と試料

顕微鏡は、検出器の開発とESEM 技術の研究のための装置として、チェコ共和国 科学院 科学機器研究所(Institute of Scientific Instruments; ISI)で設計した非市販 ESEM で、 AQUASEM II^{19,20)} と名付けられた(図1). 試料室内に 2000 Pa までの水蒸気あるいは他の気体が存在する高圧条件 下で使用可能である. AQUASEM II の本体部分はタングス テンヘアピン装備の市販高真空 SEM Tescan VEGA である.

電子信号検出系などの設計のために、種々のシミュレー ションプログラムを用いた. 真空条件に対しては SIMION 3D 7.0 (Bechtel BWXT Idaho, LLC, Idaho Falls, ID, U.S.A.), 高圧条件に対しては自製の Monte-Carlo module を備えた EOD プログラムを用いて、電位の電子軌道に及ぼす影響を 調べた²⁰⁾.検出器と差動排気試料室内のガス流と排気は、 Program Cosmos FloWorks (SolidWorks Corp., Concord, MA, U.S.A.)を用いて計算した.

検出システムの性能を示す例として,従来観測困難であっ た高圧気体中での*p-n* 接合半導体の電圧コントラスト²¹⁾ と ESEM 条件下の動物運動の観察¹⁸⁾ を紹介する.動物はダニ の一種で,Brno 郊外のダムから掬い採った.7°C,950 Pa の 蒸気圧で約5分間生きているダニの運動をその場観測して動 画に記録した.

3. 電子信号検出器

AQUASEM II には、試料室内水蒸気圧と試料温度の精密 測定装置、湿潤生物用 Peltier 冷却試料台、新設計の蒸気流 制御加湿システムがある.これらは、試料室を水蒸気や種々 の気体の高圧環境に保持し、試料からの SE と後方散乱電子 (BSE)を同時検出可能にするものである^{20,21)}.

検出システムの第一部分は新 SE シンチレーション検出器 である(図 2). これは部品の交換を必要とせずに、(0.001 Pa から 1000 Pa のガス圧まで) SEM と ESEM の両方で連続的 に作動する世界唯一の SE 検出器である²¹⁾. ESEM の高圧条 件下で SE シンチレーション検出器を用いるという構想は、 図 2b に示す二つの絞り A1 と A2 を挿入してシンチレーショ ン室を試料室から隔離することによって、実現した. 絞りと シンチレーション室との間の空間は、試料室の圧力に対して シンチレーター付近の圧力を最小にするために、回転ポンプ とターボモレキュラーポンプで真空排気されている. 適当な

図1 高真空 SEM Tescan VEGA を基に、新たに開発した四個の検出器からなる電子信号検出系、試料室差動排気・加湿系を 組み込んだ環境制御型走査電子顕微鏡 AQUASEM II. (文献 20 より)

図2 SEM/ESEM 用二次電子シンチレーション検出器 (a) 外形(全長 360 mm).(b) 断面と等電位線.E1, E2:各 1.5 Vと10 Vに荷電された集束用電極,A1,A2:各 500 Vと 1000 Vに荷電された絞り.シンチレーション単結晶の加電圧 は10 kV.等電位シミュレーションは program Simion 3D ver.7 で行った.

電位を付加した絞り A1 と A2 は、検出器のシンチレーター に向かって、試料室からの信号電子を通過さるための電子レ ンズの働きをする。検出器各部の圧力は試料室の水蒸気圧に 依存するが、数 kV の正電圧を、ガス放電の危険なしに、シ ンチレーターに加えることができる。もちろん、電極間の距 離、並びに電極 E1, E2, A1, A2 およびシンチレーターに加え る電位の選定は重要である。電位の割当てが最適ならば、主 として電極 A1 の前方の空隙でカスケード増幅が起こる。半 導体技術へのこの検出器の応用として、圧力環境でのパワー トランジスターのエミッター・ベース p-n 接合の電圧コント ラスト観察を行った²¹⁾. SE が検出されるとき、電圧コント ラストの現象が観察されることはよく知られている²²⁾. 図 3 に 0.001 Pa と 200 Pa 水蒸気圧の例を示す。

検出系の第二部分は、一個のシンチレーション BSE と二 個のイオン化 SE 検出器から構成されている(図 4). BSE

図3 パワートランジスターのエミッター・ベース *p-n* 接合の 電圧コントラスト.電圧:3V.水蒸気圧:(a) 0.01 Pa, (b) 200 Pa.

図 4 試料室, および三個の検出器からなる検出系の第二部分. (文献 20 より)

YAG:Ce³⁺ (Yttrium Aluminium Garnet activated with trivalent cerium) シンチレーション単結晶検出器²³⁾ のシンチレーター 中心部に小さい孔がある. これは, AQUSEM II の差動排気 試料室の第二圧力制限絞り (PLA2) として用いられる.

新特許の静電分離電極付きイオン化二次電子検出器(Ionization SE Detector with electrostatic Separator; ISEDS)²⁴⁾ は, YAG:Ce³⁺結晶上に酸化インジウム錫(Indium Tin Oxide; ITO)をスパッターして作った電極に負バイアスを与えて阻 止電極として用い,試料と同じ面上にある環状の検出電極に 向かってエネルギー選択した信号電子を集束させるものであ る.図4に示すように,検出電極とYAG結晶の間に網目電 極を挿入してあるので,これも阻止電極として使える.

YAG 結晶上の ITO 電極に正バイアスをかけるとイオン化 SE 検出器となる²⁰⁾.

試料室内の高圧ガスは、入射電子線束の散乱という望ましからぬことを惹き起こすが、SEのイオン化とカスケード増幅を助ける.

4. 生きた状態の生物の観察

高圧水蒸気条件でのイオン化 SE 検出器の有用性は ESEM 内で動くダニの観察(図5)で明らかにされた¹⁸⁾.この観察 はAQUASEM IIで実行できる特別な手法によってのみできる のであって、市販顕微鏡ではまず不可能である.AQUASEM IIの試料室差動排気・加湿系は、しばしば発生する圧力急騰

図5 AQUASEM IIによって生きた状態で観察したダニ. 写真 はダニの運動を記録した動画から抜き出した.2秒後の写真中 に矢印したように、ダニの下に水がある.ダニの行動は脚の 位置の変化と全体の移動でわかる.動画は、水蒸気圧950 Pa, 試料温度7°C、入射電子加速電圧20 kV,電流80 pA,試料 -PLA2間距離3mmで記録された.各写真の視野の横幅が 440 μm である.(文献18 より)

(異常波)を起こさずに、空気を徐々に水蒸気に交換してい くことができる.これによって、顕微鏡排気中,試料は常に 周囲の液体によって被われ,乾燥から守られる.液体の表面 張力がこれを助け,損傷や人為的形成物の発生なしに,試料 の形状が安全に保持されるのである.顕微鏡のPLA2 絞りを 通じての試料室の秩序立った段階的な排気が,液体による試 料の被覆を保持し,試料環境を安定に高い(相対)湿度に維 持するからである.

我々の目的は完全に自然な状態での生物を観察することで あるから、試料にはいかなる前処理もしていない、 ダニのい る水滴を試料台上のSi片に載せ、冷却台の初期温度を2℃ に設定した. ダニは半ば水中にあって仮死状態となり、2分 間で静かになった. 試料室は PLA2 の細孔だけを通してゆっ くりと排気するので, 試料に優しい. 試料室が目的圧力になっ たとき、試料室差動排気・加湿系の水蒸気の制御注入が始ま る. 試料は約15分間電子顕微鏡内にあり、その内の約5分 間が像撮影に費やされた. 観察中は,水蒸気圧 950 Pa, 試料 温度 7°C,入射電子加速電圧 20 kV,電流 80 pA,試料-PLA2 間距離 3 mm に保たれた.熱平衡条件によれば、試料 表面の湿度は95%であり、そこではダニが生きていて、水 の層が蒸発している. 観察の前段階では、数十から数千マイ クロメーター厚の水の層を意識的に維持することによって、 試料表面の乾燥を最小にし、試料を熱と放射線損傷から護っ た. 図 6 はこれを示す Geant4 (DNA package) による Monte Carlo シミユレーションの結果である. 20 keV の PE の全エ

図6 水中での20 keV 入射一次電子の散乱の Monte Carlo シ ミュレーション. (a) 水厚と吸収の関係 (b) 水厚 4 µm のと きの PE の散乱軌跡. (c) 水厚 10 µm のときの PE の散乱軌跡. (文献 18 より)

ネルギーが厚さ 10 μm の水の層によって吸収されるので, 放射損傷は無視できる程度である.逆に試料からの信号も得 られないわけである.4μmの水の層があっても,PEの半分 は吸収される.しかもビーム径は1万倍になる.観察段階で は、遅い乾燥状態で試料の表面構造が曝されるようにする. 2°C に冷却した水の層を継続的に制御蒸発させることによっ て、ダニはPE に曝され、約7°C に温度上昇して、甦生した. 脚を動かし、全体を視野の端へと移動させている.試料近く が高い相対湿度状態であることは、試料下の液体の存在と観 察中の試料表面上の液滴の凝縮でわかる.

5. まとめ

市販品でない顕微鏡 AQUASEM II とその検出システムを 紹介し, ISI 研究所の ESEM と信号検出技術の開発成果を概 観した. これらは他と設計概念が異なる独自のものである.

第一に, ESEM に対するシンチレーション SE 検出器につ いて述べた.特徴は,シンチレーターへの信号電子を通すた めの静電レンズとしても働く二個の圧力制限絞りを用いたこ とである. 検出器は 0.001 から 1000 Pa に至る水蒸気圧下の 試料室で動作できるものである. 第二は, 三個の検出器 (BSE-YAGCe³⁺, ISEDS, およびイオン化 SE 検出器)からな る SE・BSE 総合検出系である. それぞれの例として, 半導 体の電圧コントラスト, および生きて水中で動くダニのその 場動的観察を示した.

本電子顕微鏡を,物理的,化学的条件が動的に変化する, 不導体,部分的あるいは完全に濡れた有機または無機試料の 研究などに応用することは,生物,材料科学にとって極めて 有益である.

謝 辞

本研究はチェコ共和国 Grant Agency No. GAP 102/10/1410 および EU project No. CZ.1.07/2.3.00/20.0103 の支援を受けた. 協力者,特に文献 20, 21, 23, 24 に記載されている共著者に 感謝をする.

文 献

- Bozzola, J.J. and Russell, L.D.: Electron Microscopy: Principles and Techniques for Biologists, Jones and Bartlett Learning, Sudbury MA, USA, 21–31 (1999)
- Hayat, M.A.: Principles and Techniques of Electron Microscopy: Biological Applications. Cambridge Univ. Press, Cambridge UK 45–61 (2000)
- Robards, A.W. and Wilson, A.J.: Procedures in Electron Microscopy, Willey and Sons, Chichester, UK (1993)
- Roos, N. and Morgan, A.J.: Cryopreparation of Thin Biological Specimens for Electron Microscopy. Oxford Science oublications, Oxford UK (1990)
- 5) Danilatos, G.D. and Robinson, V.N.E.: Scanning, 2, 72-82 (1979)

- Danilatos, G.D.: Foundations of Environmental Scanning Electron Microscopy, Academic Press, Sydney (1988)
- 7) Ruska, E.: Kolloid-Z., 100, 212–219 (1942)
- Hashimoto, H., Naiki, T., Eto, T. and Fujiwara, K.: Jpn. J. Appl. Phys., 7, 946–952 (1968)
- 9) Lane, W.C.: Scan. Electron Microsc., 1970, 43-48 (1970)
- 10) Robinson, V.N.E.: J. Microsc., 103, 71-77 (1975)
- Fukushima, K., Ishikawa, A. and Fukami, A.: J. Electron Microsc., 34, 47–51 (1985)
- 12) Danilatos, G.D.: J. Microsc., 121, 235-238 (1981)
- Danilatos, G.D. and Postle, R.: Scan. Electron Microsc., 1982, 1–16 (1982)
- 14) Neděla, V.: Microsc. Res. Tech., 70, 95-100 (2007)
- Stokes, D.J.: Investigating biological ultrastructure using environmental scanning electron microscopy (ESEM), in Méndez-Vilas, A. (Ed) Science, Technology and Education of Microscopy an Overview, Trans Tech Publication, Badajoz Spain, 564–570 (2003)
- 16) Donald, A.M.: Nature Mater., 2, 511-516 (2003)
- 17) de Jonge, N. and Ross, F.M.: Nature Nanotech., 6, 695–704 (2011)
- Tihlařikova, E., Neděla, V. and Shiojiri, M.: J. Microsc. Micranalysis, 19, 914–918 (2013)
- 19) Neděla, V.: J. Microsc., 237, 7–11 (2010)
- 20) Neděla, V., Konvalina, I., Lencová, B. and Zlámal, J.: Nucl. Instrum. Methods Phys. Res., A 645, 79–83 (2011)
- 21) Jirák, J., Neděla, V., Černoch, P., Čudek, P. and Runštuk, J.: J. Microsc., 239, 233–238 (2010)
- Reimer, L.: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (2nd ed.), Springer Verlag, Berlin Heidelberg (1998)
- 23) Autrata, A., Schauer, P., Kvapil, J. and Kvapil, J.: J. Phys. E: Sci. Instrum., 11, 707–708 (1978)
- 24) Neděla, V. and Jirák, J.: Patent EP 2195822, Czech Patent No. 299864