SEM 式ナノプロービングシステムの開発と半導体デバイス解析への応用

Development of SEM based Nano-Probing System and Its Application

三 井 泰 裕 Yasuhiro Mitsui

^a(株)日立ハイテクノロジーズ

要旨近年のLSI故障解析ではデバイスの微細化、構造の複雑化に伴い、詳細な故障箇所同定が困難となっている.これに対応するための技術として走査電子顕微鏡(SEM)を用いたナノプロービングシステムが開発された.SEM 式ナノプロービングシステムではSEM で観察しながら、トランジスタや配線に微細探針を接触させ、電気特性を計測する.本稿ではSEM 式ナノプロービングシステムではテムの実用化に対する開発課題(微細箇所へのプロービング可能な探針形状,高精度,高信頼測定のためのプローブー試料間接触抵抗低減,探針長寿命化、高スループット化の為の高精度迅速プローブ動作制御,迅速プローブ交換,使いやすさのためのSEM の高画質化、広視野化など)および実際の解析事例について概説する.

キーワード:ナノプロービングシステム, SEM, 故障解析, LSI

1. まえがき

半導体製造分野では新デバイス・プロセスの立上げ期間短縮や量産での高歩留り維持のために、故障(不良)の原因を 究明してプロセスの改善指針を明確にする故障解析は極めて 重要な役割を果たしている.しかし、複雑、微細化された LSIでの故障解析は単純ではない.故障解析を難しくしてい る原因のひとつに複雑な回路の中の詳細な故障位置の特定が ある.図1にLSIの故障解析フローを示す.実際の故障は 複雑な回路の中で単一トランジスタ、単一配線さらにはゲー ト、ソース、ドレイン、コンタクト、ビアのようにLSIの最 小構成要素で起こっており、そのような最小構成要素にまで

図1 LSIの故障解析フロー

^a〒 312-8504 茨城県ひたちなか市市毛 882 TEL: 029-354-5497; FAX: 029-275-5119 E-mail: mitsui-yasuhiro@naka.hitachi-hitec.com 2009 年 5 月 22 日受付

故障箇所が絞込めないと,最終的な故障原因の解明を行なう 透過電子顕微鏡(TEM)や走査電子顕微鏡(SEM)などを 用いた物理解析まで辿り着くことができない.そこで,故障 原因をこの最小構成要素まで絞込む技術の実現が以前より望 まれていた.

この詳細故障箇所絞込みを行う技術としてナノプロービン グシステムが開発された^{1~5)}.ナノプロービングシステムで は実際回路内の単一トランジスタや単一配線を電気的に測定 し、その特性変化から詳細な故障箇所の推定を行う.現在、 ナノプロービングシステムには SEM と原子間力顕微鏡 (AFM)を利用した方式があるが、本稿ではプロービング操 作が簡便で、高測定スループットが可能な SEM 式について 述べる.

2. ナノプロービングシステム概要

SEM 式ナノプロービングシステムの装置概要を図2に示す.ナノプロービングシステムは光学式プロービングシステ

図2 SEM 式ナノプロービングシステム概要

図3 トランジスタへのプロービング

図4 実デバイスへのプロービング (デバイス:45 nm SRAM)

ムと同様の機能を持つが、測定対象が実回路であるため、基本的には観察のための SEM と SEM 内に設置される極めて 微細なプロービングユニットで構成される. プローブユニッ ト先端は nm デバイスのトランジスタや配線に直接接触可能 な、先端半径数十 nm の微細探針となっている. トランジス タ測定の場合は、この微細探針がゲート、ソース、ドレイン、 ウェルの各コンタクトに接触される(図3). 測定に必要な 電圧はパラメータアナライザから各探針に供給され、各探針 で測定された電流がパラメータアナライザに記録される.

SEM 式ナノプロービングシステムの量産適用には微細箇 所へのプロービング可能な探針形状,高精度,高信頼測定の ためのプローブー試料間接触抵抗低減,探針長寿命化,高ス ループット化の為の高精度迅速プローブ動作制御,迅速プ ローブ交換,使いやすさのためのSEMの高画質化,広視野 化などの開発が必要であった.

3. SEM 式ナノプロービングシステムの課題と対応策

3.1 探針形状と駆動制御

ナノプロービングシステムでは微細トランジスタや配線に 接触させるための探針が必要である. 図4に45 nm ノード SRAMのpMOS (MOS (Metal Oxide Semiconductor)のうち 正孔が電流を運ぶタイプ (p-channel MOS))コンタクトに接 触させた探針を示す. 探針は隣り合う探針同士での接触を避 けるためには細いことが望ましいが,後述する低接触抵抗化 や長寿命化のためには太いことが望ましい.この課題に対し, 材質はタングステン,形状は図4のような,先端の尖った,

図6 2 探針によるタングステン配線抵抗測定

釣鐘形が適していることが実験から確認された.本図ではプ ロービングを行うのに十分なスペースが探針間にあることが わかる.実際の探針はこの釣鐘形状が基本で,先端サイズが 各デバイス世代に適合されたものとなっている(先端半径が およそ 1/4 コンタクトピッチ).

探針の駆動制御はピエゾ素子で行われ,駆動最小ピッチは 5 nm とコンタクト径に対して十分小さいので,高精度のプ ロービング(幾何的配置)が可能である.

3.2 探針寿命

ナノプロービングシステムの探針は極めて微細のため,何 回かのプロービングで先端の塑性変形や磨耗で使用できなく なる.しかし,故障解析やプロセス評価では多量の試料を測 定する必要があるので,長寿命化による探針の消費量低減は 実用上の重要課題である.

この長寿命化に対し、前記の探針の釣鐘形状が有効であった. 図5に65-45 nm ノード用探針の先端塑性変形による寿命評価結果を示す. 65-45 nm ノード用探針はおよそ100回程度のプロービングが可能である. この回数は1日の測定数として十分と考えられる.

3.3 探針—試料間接触抵抗

高精度,高信頼度の電気特性を得るためにはプローブと試料間の接触抵抗低減は必須である.接触抵抗低減に対し,釣 鐘形状プローブによる,コンタクトへの適度な加圧,試料表面の清浄化が検討された.結果は図6に示されるが,タン グステン配線に対する接触抵抗は数オームに低減された.こ

れは静的電気特性評価に対しては十分低い値である.

また実用上の接触抵抗低減には SEM 電子ビーム照射によ る試料表面汚染低減も重要な課題であった. この試料表面汚 染低減に対しては,通常の SEM よりも高真空度 (10⁻⁵ Pa) の試料チャンバ,低脱ガス材質の配線および低汚染真空シス テムの使用で対応した. この結果,プロービングに必要な時 間の電子線照射では,表面汚染によるプローブー試料間接触 抵抗が殆ど増加しないシステムが達成されている (図7).

3.4 電流検出限界

低消費電力デバイス等でのリーク電流評価ではできるだけ 低い電流を測定したいという要求がある.電流検出下限を制 限しているのはノイズ,リーク,ドリフトである.真空内測 定は大気中測定に比べ,比較的ノイズやドリフト低減には有 利である.本開発ではさらに配線のシールド強化や物理的振 動抑制によりノイズを低減させ,また,リーク低減に対して トライアキシャル配線方式を検討した結果,プローブリーク およびノイズはfA レベルに低減された(図8).

3.5 信頼性

プロービングシステムで最も重要なのが、データの信頼性 である. 故障箇所のデータを採取したとき、それが信用でき るのか信用できないのかによって、そのシステムの性能が決 まる. したがって安定した試料、安定したトランジスタにお いて、プロービングを繰り返したときのデータ再現性が重要 となる.

図9に45 nm SRAM nMOS(電子が電流を運ぶタイプの MOS(n-channel MOS))での同一トランジスタにプロービ

ングを繰り返したときの再現性を示す.7回の繰り返しに対 し、変動は3σで3%以内であり、極微小領域でのプロービ ングであることを考えると、極めて良好な結果であったと 考えられる.この高信頼性には上記探針一試料間接触抵抗 の低減,電流測定における低ノイズ,低リーク化が不可欠 であった.

3.6 スループット

故障解析ではスループット向上も重要な課題である.ス ループット向上に対し,真空内探針,試料交換機構,複数二 次電子検出器による高画質 SEM 像,ピエゾ素子による高速 高精度プロービング制御機構(高速ステップ移動と5 nm 高 精度位置制御),繰返しパターンの認識(セルカウント技術) が検討された.さらに高スループット化とともに,使い勝手 を向上させる上方向,横方向から探針位置を観察する CCD カメラ,SEM 視野から外れた場所へのプロービングをステー ジ移動させずに行うための広領域イメージシフト(200 µm), 複雑な回路内で測定箇所を迅速に探し出す CAD ナビゲー ションシステムが検討された.これらの開発により,45 nm SRAM においても図 10 に示すような高スループットが達成 された.実際の SRAM1 ビット(6MOS)のプロービング時 間は10 分以内である.

4. 解析事例

ナノプロービングシステムの解析事例として SRAM のシ ングルビット故障解析を示す.通常 SRAM ではフェイルビッ

図 11 SRAM 故障ビットの Vgs-Ids 特性

ト解析により、故障ビットは特定される. しかし, SRAM は 6 個のトランジスタから構成されるため、6 個のうちのどれ が異常であるのか、また特性的にどのように異常なのかが特 定されないと、TEM、SEM を用いた物理分析が行なえない. そこでナノプロービングシステムを用いた故障トランジスタ の特定が必要となる.

故障ビットの測定結果を図 11 に示す. この結果から,故障トランジスタは Tr1 と Tr3 であり,コンタクト C をドレインとした時のオフ電流リークが故障原因であることがわかる. このことから,プロセス故障原因としてはコンタクト C に関連する接合耐圧低下と予想される.

そこで、プロセス故障原因を究明するためにコンタクト C の断面が TEM 観察され(図 12 (a))、コンタクト底部端の TiN 膜の異常が認識された. さらに、この異常をより明確に するために、TEM-EELS (TEM-Electron Energy Loss Spectroscopy) による Ti 元素マップが取得された (図 12 (b)). この図ではバリアメタルの TiN の一部が欠落していること が明瞭に観察されている. すなわち、プロセス故障原因は TiN の成膜異常であり、タングステン成膜時に原料ガス (WF6) から解離したフッ素が、この TiN 欠落部を通って Si 基板に到達し、エンクローチメントを引き起こした結果、接 合耐圧が低下したものと推察できる. この解析結果から、 TiN 成膜プロセスが改善され、この故障は解決された.

図 **12** 異常コンタクトの断面 TEM 像と Ti 元素マップ (a) 断面 TEM 像、(b) TEM-EELS による Ti 元素マップ

5. おわりに

SEM 式ナノプロービングシステムの課題と対応策を概説 した.本システムはすでに実際の LSI 故障解析,プロセス評 価に多用されており,今後の LSI の微細化,構造の複雑化と ともに本システムの必要度はさらに増大すると予想されてい る.そのために,高画質 SEM,不安定なデバイスに対する 電子線ダメージ低減など,LSI 微細化対応技術の開発が鋭意 行われている.また,配線故障解析のための吸収電流測定 (EBAC)機能も付加され,多用途システムとしても発展し ている.

謝 辞

本開発に多大なご援助を頂いた(株)ルネサステクノロジ 水野貴之氏に深く感謝いたします.

文 献

- Mitsui, Y., Yano, F., Kakibayashi, H., Shichi, H. and Aoyama, T.: Microelectronics Reliability, 41, 1171 (2001)
- 柳田博史,水野貴之,矢野史子,朝山匡一郎,羽崎栄一,揚村 寿英,三井泰裕,山田 理:LIS テスティングシンポジウム会 議録,359-362 (2004)
- 3)水野貴之,柳田博史,矢野史子,朝山匡一郎:"ナノ・プローバを用いた不良解析"LISテスティングシンポジウム会議録, 363-365 (2004)
- 4) 三井,奈良,澤畠,斉藤,砂押,羽崎,高内,矢野,柳田,水野,山田,古川,渡辺:LSIテスティングシンポジウム 2005 会 議録,大阪,2005 年 11 月,335–340 (2005)
- Wu, C.C., Lee, J.C., Chuang, J.H. and Li, T.T.: Proc. 31st International Symposium for Testing and Failure Analysis, San Jose, November 2005, 183–185 (2005)