講 座

膜脂質分子をナノレベルで可視化する

Visualization of Membrane Lipid Molecules at the Nanoscale

藤田秋一,藤本豊士

Akikazu Fujita and Toyoshi Fujimoto

°名古屋大学大学院医学系研究科分子細胞学分野

 要 旨 従来の免疫電顕法では、脂質分子の分布を捉えることは困難であった。急速凍結法とSDS 処理凍結割断レプリカ標識(SDS-FRL)法 を組み合わせることにより、脂質を物理的に固定し、膜脂質の分布をナノレベルで定量的に解析することが可能になった。空間統計 学的な解析を用いることで、膜内での二次元的分布を客観的に判断することもできる。この方法を応用することにより、糖脂質 GM1 とホスファチジルイノシトール 4,5- 二燐酸(PI(4,5)P₂)の分布について、他の方法では得られない新たな知見を獲得することができた。

キーワード:ホスファチジルイノシトール 4,5-二燐酸, GM1, フリーズフラクチャー, 膜脂質

1. はじめに

細胞膜は多種多様な脂質で形成され、それぞれの分布は均 ーではない. 個々の脂質分子はたえず側方拡散運動し、さら に脂質自身の性質に基づいて形成されるミクロドメイン(ラ フト)の存在が想定されている. ラフトの実体についての論 争はまだ継続中であるが、ラフト自体が離合・集散を繰り返 すダイナミックな存在であることは疑いない¹⁾. 生物物理学 的方法で捉えられた GPI 結合蛋白質の小さなクラスターは このようなラフトの性質を反映すると思われるが、直径はわ ずか 10 nm 以下、存在寿命は 1-25 msec に過ぎない²⁾.

膜脂質は果たしてラフトを作るのか、仮に作るとすればど こにどのような大きさで存在するのか.このような問題の解 決には、対象を潰してしまう生化学的な方法は不向きである. 多くの実験では界面活性剤不溶性膜(Detergent-resistant membrane: DRM)とラフトを等価のものとして扱ってきた が、DRM を得る過程で膜分子の人工的な分布変化が起こる ことが確かめられている.これに対し、一分子追跡法、 FRET、FRAP などの方法は生きたままの細胞を解析すること ができ、得られる情報も多元的である.しかしどの方法でも 分子を可視化するために何らかのマーカー(蛍光、金コロイ ドなど)を結合させる必要がある.ラフトを形成する基盤が 脂質分子間の弱い相互作用であるとすると、マーカーを結合 させること自体が分子の挙動に何らかの影響を及ぼす可能性 を否定できない.

我々は細胞に内在性に存在する膜脂質の分布をナノレベル で定量的に可視化したいと考えた.このためには電子顕微鏡 (電顕)を用いることが必要であり、またたえず動いている 膜脂質を瞬時に固定するためには急速凍結法が非常に有効で ある.さらに凍結割断レプリカ法を用いることにより、膜脂 質を物理的に固定した状態で標識を行うことができる.本稿 ではこのような原理に基づく方法について解説し、得られた 結果をご紹介する.

2. 電子顕微鏡による脂質分布の観察

2.1. 化学固定の問題点

上述したようにGPI結合蛋白質などが形成するクラスター の大きさは、通常の光学顕微鏡の解像限界を遙かに超えてい る. 電顕を用いれば観察可能なはずだが、通常の試料作製に 用いられるアルデヒド系の化学固定剤は蛋白質には作用する が、脂質とはほとんど反応しない、実際、これらの固定剤で 固定した試料に抗体を作用させると,抗原分子間が架橋され, 分布変化を起こすことが報告されている¹⁾. 一方,四酸化オ スミウムは脂質、特に脂肪酸の不飽和結合と反応するが、固 定後の試料を特異的に標識することは難しい.また仮に脂質 を固定できる薬剤を使えるとしても、薬剤が対象となる分子 に到達し、反応が完了するまでには数分の1秒~数秒かかる と予想される.この間に脂質が動く距離は、光学顕微鏡によ る観察では問題にならないかもしれないが、電顕による nm レベルの観察の場合には大きく影響する. また単に動くだけ でなく、固定剤の作用による凝集など、人工的な分布変化が 起こる可能性も高い.

2.2. 急速凍結法と SDS-FRL 法の原理

急速凍結法と凍結割断レプリカ法を用いると, 脂質分子 を物理的に固定し, 標識と観察を行うことができる. まず 生きている状態の細胞を液体ヘリウム(沸点-269°C)ある いは液体窒素(沸点-196°C)で冷却した純銅のブロックに 圧着して急速凍結する(メタルコンタクト法)ことにより,

^a〒466-8550 名古屋市昭和区鶴舞町 65 TEL: 052-744-2001; FAX: 052-744-2011 E-mail: afujita@med.nagoya-u.ac.jp 2009 年 5 月 20 日受付

分子運動を瞬時に完璧に停止させる. John Heuser らによれ ば、小さな骨格筋標本を液体ヘリウム温度のブロックで凍 結した場合、コンタクト後、1 msec 以内に凍結することが 報告されている³³. この報告の後、John Heuser は温度測定 の時間分解能を上げて実験を重ね、0.1 msec 以内に凍結が起 こることを確かめている(私信). これが化学固定に比べれ ば遙かに短い時間であることは言うまでもない. しかし後 述する GM1 の場合、リポソームでの拡散定数は 30°C で $5 \times 10^9 \text{ cm}^2/\text{sec}$ であり、0.1 msec の間に最大 14 nm の距離を 移動することができる. 実際には 0.1 msec の間にも温度が 下がり続けるので、これよりも移動可能距離は短いが、急速 凍結といってもナノレベルの世界では決して無視できない時 間である.

凍結試料を真空中の低温ステージに装着し、割断すると、 生体膜は脂質二重層の中央で劈開し、疎水性の面が広く露出 される、この面に白金と炭素の薄膜を真空蒸着すると、膜内 の蛋白質と脂質は疎水性界面の側から物理的に固定され、親 水性の面(膜の本来の表面)を外に向けて保持される. レプ リカは固体であり、レプリカに保持された膜分子が二次元方 向に動くことはないと考えられる、このようにして得たレプ リカを SDS で処理すると、レプリカで保持された膜分子以 外の成分は溶解、除去される、一方、レプリカに保持された 膜分子は SDS 処理しても脱落することなく維持される⁴⁾.ま たそれらの膜分子の親水性部分はレプリカと反対の側に露出 しているので、抗体などのプローブで特異的に標識すること ができる (SDS 処理凍結割断レプリカ標識 [SDS-FRL] 法)⁵⁾ (図1). オリジナルの SDS-FRL 法は故藤本和博士によって 開発され、細胞間結合装置や神経シナプスなどにおける膜蛋 白質分布の解析に欠かすことのできない方法となっている.

SDS-FRL 法の膜脂質に対する標識効率は次に述べる改良 によって画期的に向上した. 割断後にレプリカを作製するた めには白金/炭素 (Pt/C) と炭素 (C) を蒸着する (汉 1). 白金は電顕観察の際のコントラストを与え、炭素は物理的強 度を与える.古典的な凍結割断レプリカ法では、まず白金/ 炭素を斜め 30-45°の角度で 1-2 nm の厚さで蒸着し、ついで 炭素を垂直方向から 10-20 nm の厚さで蒸着する. SDS-FRL 法で蛋白質を標識する場合には多くの場合、この蒸着方法で 問題はないが、脂質の場合には最初に炭素を蒸着することに よって大幅に標識効率が改善される^{4,6)}.実際にはまず炭素を 薄く(1-2 nm)蒸着し、ついで通常の方法と同様の厚さで 白金/炭素,炭素の順番で蒸着する3段階法を用いている. 1段階目に炭素を蒸着することによって、レプリカに保持さ れる脂質分子の親水性頭部に若干の可動性が付与され(尾部 は固定されているので二次元的には動けない), 抗体などと の反応性が増すためではないかと考えられる.

3. 細胞膜脂質分子の局在と動態

3.1. 細胞膜外葉の糖脂質 GM1

ラフト仮説によれば、ラフトはスフィンゴ脂質やコレステ

図1 SDS-FRL法の概略.(A)急速凍結した細胞を凍結割断し, 炭素と白金/炭素を蒸着する.(B) 作製したレプリカをSDS 処理し,細胞成分を溶解,除去する.レプリカに保持された膜 分子を抗体などのプローブで標識する.

ロールなどの脂質が基盤となって形成される液体秩序相の領 域と考えられている(図 2A).人工脂質膜では液体秩序相の 形成を強く示唆する結果があるが、生きている細胞の膜に同 様の領域が形成されるのかどうかは今のところ不明である. スフィンゴ糖脂質の GM1 は多くの実験でラフトのマーカー として使われてきた.我々は細胞膜での GM1 の微細分布に ついて SDS-FRL 法を用いて検討した⁶.

図 2B はマウス線維芽細胞を急速凍結し,得られた細胞膜 外葉のレプリカに抗 GM1 抗体,ついで金コロイド標識二次 抗体を反応させた結果で,標識は二次元平面に分布する点と して観察される.ラフト仮説を最も単純に解釈すると,GM1 はコレステロール依存性のクラスターを形成しているはずで ある(図 2A).図 2B のコントロール(無処理正常培養条件 下の細胞)の写真(左)に示した GM1 標識は,一見してク ラスターを形成しているように見える.この GM1 標識の分 布パターンを客観的に判断するために,点過程解析⁷⁷ という 手法を用いる.点過程解析の代表的な方法として Ripley の K 関数(Ripley's K-function)がある.大雑把にいうと K 関数 は次のような考えに基づいている.点の分布が完全にランダ ムだとすると,ある点を中心として半径 r の円の中に入る点 の密度は、サンプル数が大きくなれば、平面全体の点の平均 密度に近づくはずである.一方,点がクラスターを形成する

図2 ラフトの模式図(A)およびマウス線維芽細胞のGM1標識とコレステロール除去の影響(B). (A) ラフト仮説によればGM1はコレステロール依存性にクラスターを形成すると予想される.(B)マウス線維芽細胞のレプ リカをウサギ抗GM1抗体と浸漬した後,5nm金コロイド結合抗ウサギIgG抗体で標識した.コントロール(左),methyl-βcyclodextrin(MβCD)で処理して細胞膜のコレステロールを減少させた場合(右)の結果を示す.グラフはGM1標識の分布 をL関数で解析した結果である.

場合には、半径rの円の中に入る点の密度を示すグラフは、 平均密度と異なる極大点を示すと考えられる. 図2Bのグラ フの横軸は半径r、縦軸のL(r)-rは半径rの円内の点密度を 反映する値である. なおこのL(r)-rはK関数を改変したL 関数と呼ばれるもので、ランダムに分布する点の場合に1か ら-1の範囲に入るように標準化されている. L(r)-rが1よ りも大きい値をとる場合に金コロイドの分布はクラスターし ていると判断され、関数のピークのr値はクラスターの平均 半径を表す. 従って図2BのグラフはGM1標識が半径約 50 nmのクラスターを形成していることを示す.

細胞膜のコレステロールを抽出する操作を行った後に細胞 を凍結し、同様の方法で GM1 の標識を行った結果が図 2B の右の写真である.この図の標識をL関数で解析すると、 グラフのピークが低くなり、ランダム分布に近づいているこ とが分かる.同様にして多数例を解析すると、同一の細胞膜 においても GM1 の分布パターンは領域によって大きな差異 があり、クラスター分布とランダム分布の領域が入り交じっ て存在することがわかった.詳細な議論は省くが、急速凍結 の前に氷温においた細胞の結果などから、GM1 の分布がラ フト自体の範囲を示す訳ではないことも明らかになった(文 献 6,8を参照).

このように SDS-FRL 法の最大の利点は何の前処理も行っ ていない内在性の GM1 の分布を定量的に評価できることに ある. また標識効率も十分に高く, ヒト線維芽細胞では存在 する GM1 のうち 18-27%程度の分子を捕捉できる⁶⁾. さらに 細胞膜の広い領域 (レプリカ当たり平均 100 μ m² 以上)を一 度に観察できるのも大きなメリットであり, 細胞膜の局所的 な分化を解析する上で大きな威力を発揮する.

3.2. 細胞膜内葉のイノシトール燐脂質 PI(4,5)P2

イノシトール燐脂質の一つである PI(4,5)P₂ は、細胞内情 報伝達、アクチン細胞骨格の制御、イオンチャネルやトラン スポーターの活性調節、エンドサイトーシス、エキソサイトー シスなどに関与することが報告されている. このように1種 類の脂質分子が多数の機能に関与し、しかも相互に干渉しあ わないためには、PI(4,5)P₂が異なるコンパートメントに分か れて存在(区画化)し、それぞれ独立に存在量が増減する仕 組みの存在が予想されてきた. しかし PI(4,5)P₂の区画化を 検出する方法がないため、この予想の当否を確かめることは できなかった.

PI(4,5)P₂ と特異的に結合する Phospholipase C (PLC) $\delta1$ の PHドメインと GFP の融合蛋白質 (GFP-PH) を細胞に発現 させ、PI(4,5)P₂ の動態変化をライブ観察することができる. この方法では種々のアゴニスト刺激による細胞膜の PI(4,5)P₂ 量のダイナミックな変化を捉えることが可能である. しかし ながらこの方法は、①局所的な量の変化を追うには解像度が 不十分である、② PI(4,5)P₂ の分解で産生されるイノシトー ル三燐酸 (Ins(1,4,5)P₃) が GFP-PH とより高親和性で結合す るため PI(4,5)P₂ との間で拮抗が起こる、③ GFP-PH が結合 することにより、PI(4,5)P₂ の挙動が影響される、④エフェク ター分子に結合している PI(4,5)P₂ には GFP-PH が結合でき ない、などの問題点が指摘されてきた.

一方, SDS-FRL 法を PI(4,5)P₂ に応用すると, ダイナミッ クな変化を捉えるのは労力を要するが, 上に述べたライブイ メージング法の問題点をほぼ完全にクリアできる. すなわち, ①解像度は非常に高い, ② Ins(1,4,5)P₃ はレプリカ標識時に は存在しないので拮抗の可能性はない, ③ GFP-PH のよう

ヒト線維芽細胞のレプリカを GST-PH と浸漬した後, ウサギ抗 GST 抗体に続いて 5 nm 金コロイド結合 protein A で標識した. (A) 平坦な細胞膜領域, カベオラ, クラスリン被覆ピットの PI(4,5)P₂ の分布. 中央の写真はカベオリン -1 (5 nm 金コロイド: 矢印) と PI(4,5)P₂ (10 nm 金コロイド) の二重標識を示す. (B) 各領域の PI(4,5)P₂ の標識密度. 無処理, Angiotensin II 投与 10, 40 秒後の結果を示す. それぞれの領域の無処理時の密度を1 とした.

な外来性の蛋白質を細胞に発現させる必要はない,④可溶性 のエフェクター分子は SDS 処理で除かれるので問題になら ない,ということになる.さらに検索対象の細胞には何の事 前処理も必要とせず,動物体内の組織を含む種々の細胞に応 用可能であることも大きな利点である⁹.

レプリカによって捕捉した PI(4,5)P₂を標識するには、GST と PLC81 の PH ドメインの融合リコンビナント蛋白質(GST-PH)をプローブとして用いる⁹⁾. この方法の標識特異性は以 下の実験で確かめられた. 1) PI(4,5)P₂を含むリポソームとは 結合するが、他のイノシトール燐脂質を含むリポソームとは 結合しない、2) GST-PH をあらかじめ Ins(1,4,5)P₃ と浸漬する と標識が起こらないが、PH ドメインに結合しない Ins(1,3,4)P₃ では吸収されない、3) PH ドメインの2つのアミノ酸を置換 した PI(4,5)P₂ に結合しないミュータントでは標識は起こらな い. これらの結果より GST-PH をプローブとして SDS-FRL 法 で PI(4,5)P₂ を特異的に標識できることが分かった.

図 3A はヒト線維芽細胞の細胞膜内葉のレプリカを標識した結果である。細胞膜の平坦な領域における PI(4,5)P₂の標識はごく弱いクラスターを示していた。これに対し、カベオラの開口部には PI(4,5)P₂の標識が強度に集中していた。カベオラへの PI(4,5)P₂の集中はマウス精管平滑筋など in vivo の細胞でも同様に認められた⁹⁾.また PI(4,5)P₂はクラスリン被覆ピットの形成に関与する複数の蛋白質に結合し、エンドサイトーシスに関わることが知られているが、実際、直径 100-200 nmのクラスリン被覆ピットの凹みにも強い標識が見られた。

さらにアゴニスト刺激した細胞を経時的に急速凍結し,上 記の3つの部位のPI(4,5)P₂量の変化を検索すると,部位ご とに大きな挙動の違いがあることが明らかになった (図3B)⁹⁾.ヒト線維芽細胞をangiotensin II で刺激し,非分 化平坦領域とカベオラ近傍のPI(4,5)P₂の標識密度を経時的 に計測すると,平坦領域では刺激5,10秒後に非刺激時の約 40%まで減少するが,同じ時期のカベオラ近傍の標識密度に は変化はない.しかし,刺激40秒後になると,平坦領域の 標識密度はほぼ元のレベルにまで回復しているのに対し,カ ベオラ近傍では非刺激時の約20%まで減少していた.また クラスリン被覆ピットのPI(4,5)P₂ 標識密度は刺激10秒後に 約70%に減少したのみで,他の領域に比べて変化は少なかった. さらに Ca²⁺ イオノフォアで細胞内 Ca²⁺ 濃度を上昇させた場合に見られる PI(4,5)P₂の減少は,angiotensin II の場合と逆にカベオラ近傍で先行して見られ,平坦領域では遅延した.これらの結果は,細胞膜の PI(4,5)P₂ が平坦領域,カベオラ近傍,クラスリン被覆ピットの3領域でそれぞれ異なる挙動をとることを示している.従来の方法では分からなかった細胞膜における PI(4,5)P₂ の区画化を初めて実証した結果であると言える.

4. まとめ

ある特定の脂質分子の機能を理解するには、その局在と動 態を、高解像度でしかも定量的に捉える必要があり、この点 で急速凍結法と SDS-FRL 法を組み合わせた方法は非常に有 効である。特に PI(4,5)P₂ の場合のように、細胞膜の近接す る領域間で見られる脂質分子の挙動の違いを観察できるの は、今のところ SDS-FRL 法だけである。今後、SDS-FRL 法 の解像度と定量性をさらに高め、また他の脂質分子に対する プローブを新たに開発することで、SDS-FRL 法の応用範囲 を拡げ、その有用性を示して行きたい。

文 献

- Kusumi, A. and Suzuki, K.: *Biochim. Biophys. Acta.*, 1746, 234–251 (2005)
- 2) Sharma, P., Varma, R., Sarasij, R.C. et al.: Cell, 116, 577-589 (2004)
- Heuser, J.E., Reese, T.S., Dennis, M.J. et al.: J. Cell Biol., 81, 275– 300 (1979)
- Fujita, A. and Fujimoto, T.: *Histochem. Cell Biol.*, **128**, 385–389 (2007)
- 5) Fujimoto, K.: Histochem. Cell Biol., 107, 87-96 (1997)
- Fujita, A., Cheng, J., Hirakawa, M. et al.: Mol. Biol. Cell, 18, 2812– 2822 (2007)
- Prior, I.A., Muncke, C., Parton, R.G. *et al.*: J. Cell Biol., 160, 165– 170 (2003)
- 8) Fujita, A., Cheng, J. and Fujimoto, T.: *Biochim. Biophys. Acta.*, in press, (2009)
- Fujita, A., Cheng, J., Tauchi-Sato, K. et al.: Proc. Natl. Acad. Sci. USA, in press, (2009)