特集

SPM のフロンティア

~多様な材料系の研究ニーズに対応する SPM 物性計測の最先端~

フェムト秒時間分解走査プローブ顕微鏡技術の開発

Development of Femtosecond Time-Resolved STM —a Method Visualizing Ultrafast Phenomena

吉田 昭二,武内 修,重川 秀実*

Shoji Yoshida, Osamu Takeuchi and Hidemi Shigekawa

筑波大学·数理物質系

要旨 超短パルスレーザーによるポンププローブ法と走査トンネル顕微鏡を融合し、時間・空間両領域で極限的な分解能を持つ顕微鏡の
開発を行った. ポンプ光とブローブ光の間の遅延時間の変調にパルスピッキング法を導入し、光励起に伴う熱膨張や変位電流の影響など抑えることにより、STMの空間分解能を保ちながら、超短パルス光のパルス幅からマイクロ秒を越えた幅広い時間領域にわたる現象を可視化できる新しい顕微鏡が実現した.

キーワード:走査トンネル顕微鏡,超短パルスレーザー,ポンププローブ法,時間分解STM

1. はじめに

走査トンネル顕微鏡(STM)の発明から 30 年ほどになる. その間に STM の仕組みを基盤とする多くの顕微鏡(走査プ ローブ顕微鏡:SPM)が開発されてきた^{1~3)}.実空間で,し かも様々な環境下で原子レベルの空間分解能が実現されるこ とから,これら顕微鏡が幅広い分野で利用され多くの成果を もたらしてきたことはよく知られている.製品として購入す れば容易にデータを得る実験も可能であるため,既に完成さ れた手法と受け取られることも多いかと思われるが,スピン トロニクスやバイオへの展開を含め^{4~6)},現在も未開拓の領 域を切り開く新しい技術が工夫され,SPM の最先端は大き く進展している.

現象を深く理解するには、構造や量子過程のダイナミック スを詳細に解析する事が重要であるが、ナノスケール科学の 発展により、微細構造や局所的に変調されたポテンシャルの 中で生じる物理的、化学的過程を高い時間分解能で計測する 技術の開発が強く求められている。時間分解能は、対象とな るプローブ信号の種類により、信号の変化をどこまで測定す ることが可能かによって決まる.STMの時間分解能は電流 一電圧変換回路の周波数帯域によるが、一般に、安定した動 作を行うためには 100 kHz 程度が上限となり、原子レベルの 空間分解能を持つが時間分解能は高くない. 光学的な手法では、超短パルスレーザーやストリークカメ ラを用いる事で、高い時間分解を持つ分光法が実現されてい る.前者の代表的な手法であるポンププローブ (PP)法では 遅延時間を持たせたパルス光対列を試料に照射する^{7,8)}.最初 のパルス (ポンプ光)で試料を励起し、その状態の変化を二つ 目のパルス (プローブ光)の反射率や透過率を測定すること で観察する.時間分解能はパルス幅で決まることからフェム ト秒領域の現象を解析する事が可能となっている.また、近 接場の利用 (Near-field Scanning Optical Microscopy; NSOM) や、光電子計測 (Photoelectron Emission Microscopy: PEEM) と二光子過程を組み合わせる事で回折限界を超えた空間分解 能で時間分解測定を行う試みが進められてきた^{9~11)}.

同様の方法は超高速電子顕微鏡(Ultrafast Electron Microscopy: UEM)にも用いられており、例えば、最初のパルス光 で試料を励起した後、二つ目のパルス光で電子線源を照射し てプローブとなる超短パルス電子線を生成し、透過イメージ を遅延時間の関数としてストロボ的に記録することで時間分 解の像が得られている¹².

我々は、この10年ほど、量子光学の技術とSTMを融合 した光励起STMの開発に力を注いできたが^{13~21)},本稿では、 最近、新しく開発に成功したフェムト秒領域の時間分解能を 持つ遅延時間変調型STM (Shaken-Pulse-Pair-Excited STM: SPPX-STM)²¹⁾ について概要を述べる.SPPX-STMでは、光 学的なポンププローブ法をSTMと組み合わせるが、次章で 原理を概観した後、装置・手法、そして、得られた結果の例 を、実際に実験を行う際の留意点など含め紹介する.

^{〒305-8573} つくば市天王台 1-1-1

^{*} E-mail: hidemi@ims.tsukuba.ac.jp

http://dora.ims.tsukuba.ac.jp

²⁰¹¹年11月20日受付

2. SPPX-STM の原理

図1は時間分解測定の模式図である.光学的なポンププ ローブ法では、先に述べたようにポンプ光で励起した試料の 状態の時間変化を、例えば、プローブ光の反射率の遅延時間 依存性を測定することで観察する(Optical Pump-Probe Reflectivity measurement method: OPPR 法).一方、時間分解 STM では、試料の探針直下の領域を、OPPR 法と同様のパ ルス光対の列で照射するが、遅延時間に対するトンネル電流 の変化を信号とする.つまり、STM としては通常のトンネ ル電流の測定を続けながら、励起光パルス対の遅延時間を変 化させて時間分解信号を得る.先に述べたように、回路的な 制約により高速な測定が難しい STM で、如何にしてフェム ト秒領域の測定を可能にするかがポイントになる^{22~24}.

図2にパルス光対により誘起されるトンネル電流とパル ス光対間の遅延時間の関係を示す.遅延時間が十分大きい場 合(図2A),個々のパルス光により励起される過渡的なトン ネル電流の大きさは等しく,実際の測定にかかる平均のトン ネル電流に独立に寄与する.一方,遅延時間が一つ目のパル ス光により励起された状態の緩和時間に比べて短く,二つの パルス光による励起の間に非線形の干渉があれば,二つ目の パルス光により誘起される過渡的なトンネル電流は遅延時間 に依存する(図2B, C).この場合,平均的なトンネル電流 も遅延時間に依存することになるが,時間分解能はOPPR 同様,パルス光幅によってきまり,現象のダイナミックスを フェムト秒領域の時間分解能でトンネル電流を用いて(従っ

図2 SPPX-STMの測定原理. 二つのパルス光強度を等しく設定した場合を表示.

て,STM の空間分解能で)測定することが可能になる²⁰⁾.

非線形性を生み出す過程は対象とする試料により異なる が、本稿では半導体の場合について実験例とあわせて4章で 紹介する.

3. SPPX-STM 装置・手法の概要

2章で説明した測定を行うためには幾つかの乗り越えるべき課題があるが、中でも熱膨張の問題を解決することが難しく、STM の発明当初より多くの試みがなされたにもかかわらず新しい顕微鏡の実現が妨げられてきた.

光学的な励起によるトンネル電流の変化は非常に微弱で, 信号を測定するにはロックイン計測が必要である. ロックイ ン計測とは、励起過程(今の場合励起光)をある周波数で変 調し、同じ周波数で変化する信号成分を取り出すことで SN 比を高くする測定法である.通常の光学的手法では光強度が 変調されるが、STM では光強度の変調が探針や試料を熱的 に伸縮させる. 探針試料間の距離が1Å変化するとトンネル 電流は一桁変化してしまい、更に変位電流の値も大きいこと から本来の信号は覆い隠されてしまうことが大きな問題で あった. 我々は光強度に代えて遅延時間を変調する方式を用 いることでこの問題を回避し、サブ ps の超高速のトンネル 電流変化を観測することに初めて成功した¹⁴⁾.しかし、最初 に開発した第一世代の時間分解 STM では、機械的に光路長 を変えることで遅延時間の変調を行う仕組みを用いたが、可 動ミラーの可動距離と速さには制限があるため変調振幅は ps 程度と小さく、変調周波数は 20 Hz 程度に限られる. そ のためロックイン信号強度は非常に微弱であり、また、トン ネル電流やレーザー強度の低周波ノイズの影響を強く受けて しまう、従って、このシステムでは、測定は可能になったも のの計測には長時間の積算が必要で、時間分解信号を空間的 にイメージングすることは実質的に不可能であった.

こうした問題を解決するため、パルスピッカーを用いた新 しい遅延時間変調法を開発した²¹⁾.図3(a)に第二世代のシ ステムの図を示す. パルスピッカーは偏光板と高速ポッケル スセルにより構成され、入力されたパルス列から任意のパル スを取り出すことが可能である. 遅延時間の作成は、同期し た2台のフェムト秒レーザー(実験で用いたのはパルス幅 140 fs)から出力されるパルスの取り出すタイミングを調整 することで行う. パルスピッカーを通過するパルスの時間間 隔は任意に変えられるが、例えば図のように 90 パルスのう ち1パルスのみを通過させる場合、繰り返し周波数はもとの 90 MHz から1 MHz に減少し、最大の遅延時間 t_{max} はその周 期の半分にあたる 500 ns まで大きくすることが出来る. 遅 延時間の変調はこのtmaxを基準にして、ある遅延時間taとの 間で周期的に切り替えることで行う. また, この方式では 図3(b)に示したように矩形波的に遅延時間を変調するため、 ロックインアンプを用いて計測される信号は $\Delta I = I(t_d) - I(t_{max})$ に比例する. 通常よく行われるようにサイン波で変調を行う と大きな振幅での変調は正しい信号の計測を妨げるが、矩形

図3 (a) SPPX-STM システムの模式図と写真. (b) sin 波と矩形波による遅延時間変調の模式図.

波を用いる場合 t_{max} を試料の励起緩和時間より十分に長く設定することが可能で、信号は定常状態からの差分 $\Delta I = I(t_d) - I(\infty)$ とみなすことができる. このように遅延時間の変調振幅を大きくすることで絶対値を検出することが可能となり、 微分信号測定の場合に比べて信号強度が増大される. さらに遅延時間を 1 kHz と高速に変調することでノイズレベルが大幅に低減され、結果として信号の SN 比は第一世代と比較しておよそ 10² 倍程度向上し、測定時間は 1/10⁴ 程に短縮された.

こうして, 微弱なトンネル電流信号を精密に短時間で安定 して測定することが可能になったことで,時間分解信号を STM の空間分解能でマッピングする顕微鏡が実現した. 次 章では, 先に述べたように SPPX-STM を半導体試料に用い て得られた結果を例として,新しい顕微鏡法の詳細を具体的 に説明する.

4. 時間分解信号の測定例

まず,SPPX-STMを用いた半導体計測におけるトンネル 電流の遅延時間依存性と光キャリアとの関係を考察する. 図4はn型半導体を試料としたトンネル接合のバンド図に より光キャリアとトンネル電流の関係を示したものである. STM 探針,トンネルギャップ,試料の間にはナノスケール の金属・絶縁体・半導体(MIS)構造が形成される.探針・ 試料間に逆バイアスを印加すると,半導体内に電界が染みこ むことでバンドが湾曲する(探針誘起バンドベンディング: TIBB).

この状態に光パルスを照射し、光キャリアを注入すると、 キャリアは電界によってドリフトし、少数キャリア(正孔) が表面に蓄積することによって TIBB は緩和する(図4(b)). この時、暗状態から変化する表面ポテンシャルの大きさが表 面光起電力(SPV)である^{24,25)}.パルス照射直後、バイアス 電圧は SPV の大きさだけトンネル障壁に掛かるようになる ため、トンネル障壁が下がりトンネル電流は増加する.その 後,光生成した少数キャリア(正孔)密度は再結合によって 減衰するが,表面側では再結合の相手である多数キャリア(電 子)が不足しているために再結合はバルク側で優先的に起こ る.そしてバルク側のキャリア密度が減衰した後,表面に蓄 積したキャリアは図4(c)に示すように,熱電子放出によっ てバルク側へ拡散することで減衰する.こうして2つの過程 で少数キャリア密度が減少するとSPV は緩和し,トンネル 電流も照射前の元の状態に戻っていく.

これら2つの過程は、先に述べたトンネル電流の光強度に 対する非線形な性質を利用して計測することができる.まず、 1つ目のパルス光(ポンプ光)の照射後、バルク側のキャリ アが多く残存している状態で2つ目のパルス光(プローブ光)

図4 半導体試料の SPPX-STM. (a)-(c) バンド構造の模式図 と (d) 測定信号の例.

が照射されると、光キャリアの生成は残存するキャリアに よって阻害されプローブ光の吸収率が低下する. この現象は 吸収飽和と呼ばれるが、プローブ光による生成キャリアの量 はポンプ光による生成に比べて減少し、従って、SPV の大き さ,即ちプローブ光によるトンネル電流変化量も小さくなる. 一方、続いて起こる表面キャリアの減衰過程においてプロー ブ光が照射されると、バルクキャリアはすでに減衰している ため光キャリアはポンプ光の場合と同量生成されるが、ポン プ光により生じた SPV が緩和していないため、プローブ光 照射で生じる SPV は小さくなり、その結果としてトンネル 電流の寄与は小さくなる. こうした機構によりプローブ光に よるトンネル電流変化量は遅延時間に依存して変化し、その 大きさはプローブ光照射時の光キャリアの残存量が多いほど 減少する。この変化は電流プリアンプを通して時間平均され た後も微弱なトンネル電流変化 ΔI として観測され, ΔI を遅 延時間に対してプロットすることで2つのキャリア緩和渦程 を計測することができる(それぞれ図2と同様の仕組み).

図4(d)にn型GaAs(110)表面上で得られたSPPX-STMスペクトルを示す.負の遅延時間はプローブ光がパルス光より先に到達する条件に相当するが、2つのパルス強度が等しい場合正負の区別はなくなりスペクトル形状は遅延時間ゼロを中心に対称になる.このスペクトルでは時定数の異なる2つの指数関数的な減衰が観測されているが、先に述べた機構により速い減衰成分がバルクキャリアの再結合寿命、遅い減衰成分が熱電子放出による表面キャリアの減衰に対応する.このうちバルクの再結合成分は吸収飽和に起因する信号であり、強い光を用いて多量のキャリアを励起するとより観測されやすくなる.

図5は、異なるキャリア寿命を持つ半導体試料からの時間分解信号である.キャリア再結合中心である As 欠陥を多

図5 LT-GaAs, GaNAs, GaAs, H-SiからのSPPX-STM 信号((b), (d), (f), (g)) と OPPR 信号 ((a), (c), (e)). 寿命はそれぞれ, (a) 1.5 ps, (b) 2.4 ps, (c) 410 ps, (d) 440 ps, (e) 3.3 ns, (f) 4.8 ns

量に含む低温成長 GaAs や、窒素の混晶により結晶性が低下 する GaNAs では、それぞれ 2.4 ps, 440 ps の短いキャリア 寿命が観測され、2.4 ns の寿命を持つ標準的な GaAs 試料に 比べて著しく速い減衰が生じていることが確認される. SPPX-STM スペクトルから求められたこれらキャリア寿命 は、光学ポンプ―プローブ測定によって得られた結果と良い 一致を示すことから, SPPX-STM 測定を用いる事で局所的 なキャリア寿命の定量的な評価が可能であることがわかる. さらに、間接遷移型半導体で長い再結合寿命が期待される水 素終端 Si 表面では、実際に us 秒の寿命を持つ遅い緩和過程 が観測されている.新しい遅延時間変調システムを用いるこ とでps~usの6桁(実際はパルス幅からさらに長い時間) に及ぶ幅広い時間スケールでキャリアダイナミックスの計測 が可能になった. 光学的な手法ではマクロな情報を空間的に 平均するため、実験の途中で設定を調整しても大きな影響が ない場合も、STM では局所的な情報を得るため、例えば測 定の場所が移動することで、全く異なる対象の実験になって しまう.従って、一つの顕微鏡で幅広い時間領域にわたる現 象を観察できることは、根本的に重要な意味を持つ.

次に表面キャリア寿命の計測例として n 型 GaAs(110) 表面 上の Co ナノ粒子を対象とした実験を紹介する.表面準位の 存在しない GaAs(110) 表面に Co を蒸着すると GaAs のバン ドギャップ中に孤立した深いギャップ準位を持つナノ粒子が 形成される (図 6 (a)). 一般に、ギャップ準位が存在すると キャリアはギャップ準位に捕獲され再結合するため、キャリ アの減衰は加速されることになる.しかし、Co ナノ粒子に おける表面キャリア再結合のメカニズムでは、Co の準位に 捕獲された少数キャリア (正孔)の再結合相手である電子は 表面空乏層によって表面に存在しないため、実際には、STM 探針からトンネル電流によって Co の準位に電子が供給され、 捕獲された正孔と再結合することが考えられる (図 6 (b), J_e, J_h はギャップ内準位へのトンネル電流とホール捕獲電流). その様子を調べるために、まず、GaAs 表面上と Co ナノ粒 子上で SPPX-STM の計測を行った.

図6(c)にGaAs表面上,図6(d)にCo上で得られたスペ クトルを示す.測定条件設定の詳細は割愛するが,ここでは 表面キャリア成分に注目するため,バルクキャリア寿命が観 測されないように光強度を下げて実験を行っており,実際, GaAs上では表面キャリアに対応する220 nsの長い寿命成分 のみが観測されている.一方,Coナノ粒子上では,遅い成 分であるにも関わらず,キャリア寿命は予想通り2.4 nsと短 く観測された.

再結合のメカニズムを確認するため、Coナノ粒子上でキャ リア寿命のトンネル電流依存性図を調べた結果を図6(e)に 示す.トンネル電流を増やすとキャリア寿命は短くなり、探 針から電子が供給されることで再結合が促進されている様子 がみてとれる.図から、ある値以上では寿命はトンネル電流 に依存しなくなり一定の値を持つが、これは、再結合の律速 過程と関連している. Co ナノ粒子が形成するギャップ内準位での再結合過程を 考えると、①探針からの電子の供給速度、② GaAs 価電子端 からの正孔の捕獲速度、③準位における再結合速度、の3つ の律速過程が挙げられる.通常、③の再結合速度は他に比べ て十分に速いため、再結合寿命は①と②のどちらか遅い方に より律速される.したがって、トンネル電流を増やし①の電 子の供給速度を上げることで②の過程における正孔の捕獲過 程が律速となる状態が作られる.実験からは、上に述べた様 にトンネル電流を増加させて得られる一定の寿命から捕獲時 間が求められることになる(図6(e)).

以上,一連の測定を基に解析する事で,ギャップ準位にお ける正孔捕獲時間 T_{cap} の定量的な評価が可能となる.そこで, 次にサイズの異なる様々な Co ナノ粒子に対して T_{cap} の評価 を行った.それぞれの粒子から得られた T_{cap} を面積に対してプ ロットすると(図 6 (f)), T_{cap} は面積に対しておおよそ反比例 する関係が得られた.Co ナノ粒子のキャリア捕獲断面積が ナノ粒子自身の実際の面積と対応するものと考えるとショッ クレー・リード・ホールの再結合モデルと符号する²⁶.

最後に, キャリア寿命の空間マッピングを行った結果を示 す. 図7(a)はCoナノ粒子/GaAsのSTM像で, サイズの近 い10個程のCoナノ粒子が分布している. この領域におい

図6 Co ナノ粒子 /GaAs の SPPX-STM. (a) STM 像, (b) ギャッ プ内準位を介した再結合の模式図, (c) (d) GaAs 領域, Co ナ ノ粒子領域で得られたスペクトル, (e) 再結合寿命のトンネル 電流依存性, (f) 再結合寿命の粒子サイズ依存性.

て時間分信号を求めマッピングを行った.

STM 像でキャリア寿命像を得るためには、まず遅延時間 を固定した状態で探針を走査させ、ある遅延時間τに対する ΔIの空間マッピングを行う.得られたΔIの空間分布像はポ ンプ光照射からτ秒後の光キャリア分布を表すスナップ写真 に対応し、遅延時間を変化させて繰り返し同じ領域で測定を 行うことで、局所的な光キャリア分布の時間変化、減衰の様 子を STM の空間分解能で得ることが可能になる.

個々の場所における時間分解信号は、取得した複数の ΔI 像を元に得られる各領域の ΔI の時間変化を指数関数で フィッティングすることによりキャリア寿命を算出すること で得られる.これら、局所的な領域で得られた寿命を、試料 前面にわたりマッピングして画像化することで、最終的に 図7(b)に示したキャリア寿命像が得られることになる. STM 像との位置的対応をわかりやすくするため、図7(b) では、STM 像と寿命像の2つの像を重ねて表示してある. また、図7(c) は図7(b)の直線に沿った断面図で、キャリ

図7 Coナノ粒子/GaAs の (a) STM 像, (b) (a) の領域で得 られた時間分解信号の2次元マッピング像. STM 像と重ねて 表示. (c) 時間分解信号像 (b) の直線に沿った断面図.

ア寿命は GaAs と Co ナノ粒子の間で急峻に変化している様 子が見て取れる.

こうして得られた非常に高い空間分解能は、Co ナノ粒子 にトンネル電流を注入することで再結合が促進されるとする モデルを支持する.つまり、STM 探針が Co ナノ粒子上にあ る場合にのみ、探針から注入される電子と正孔がギャップ準 位において再結合し観察された短いキャリア寿命が得られる のである.本手法を用いると、隣接した Co ナノ粒子に対し て個々の粒子の特性を直接調べることが可能であり、ナノス ケールの構造を持つ試料の解析において SPPX-STM が大き な可能性を持つ事が示唆される.

5. まとめ

新しく開発したフェムト秒時間分解 STM (SPPX-STM) について,原理,装置,測定方法を概観した.本稿では、半 導体試料の測定例をもとに、光キャリアの再結合寿命や ギャップ準位へのキャリア捕獲過程など, SPPX-STM が半 導体の基礎物性の解析に有効であることを紹介した.本稿で は紹介しきれなかったが、GaAs-PIN ダイオードを対象とし た実験では、空乏層(I領域)で生成した光キャリアが内蔵 電界によるドリフトによって素早く減衰する様子をナノス ケールで可視化することにも成功している²⁷⁾. 今回は、半導 体のキャリア寿命計測を例として、本手法がピコ秒~マイク ロ秒の時間分解能を持つことを示したが、原理的には、時間 分解能はパルス光幅によりのみ制限を受けることから、より 短いパルス幅を持つレーザーを使用すれば、分子振動やフォ ノンなどさらに速い時間領域の物理現象を計測することが可 能である.また、Coナノ粒子/GaAs 表面の計測において、 1nm を切る高い空間分解能を確認したが、本手法はトンネ ル電流をプローブとするため、原理的な装置の空間分解能は、 一般のSTMと同様に原子レベルである.

現在も,異なるメカニズムを持つ現象の観察や解析法の整備など進めているが,新しく開発した顕微鏡が,今後,ナノ スケール科学のさらなる展開において役立つことを期待して やまない.

文 献

- 三浦 登,毛利信男,重川秀実:朝倉物性物理シリーズ4「極限実験技術」,朝倉書店,東京,147-234 (2003)
- 2)重川秀実,吉村雅満,坂田 亮:河津 璋(編),実戦ナノテ クノロジー・走査プローブ顕微鏡と局所分光,裳華房,東京, 1-421 (2005)
- 3)重川秀実,吉村雅満:河津 璋(編),走査プローブ顕微鏡-正しい実験とデータ解析のために必要なこと,共立出版,東 京,1-417 (2009)

- Loth, S., Etzkorn, M., Lutz, C.P., Eigler, D.M. and Heinrich, A.J.: Science, 329, 1628–1630 (2010)
- Kemiktarak, U., Ndukum, T., Schwab, K.C. and Ekinci, K.L.: *Nature*, 450, 85–89 (2007)
- Kodera, N., Yamamoto, D., Ishikawa, R. and Ando, T.: *Nature*, 468, 72–76 (2010)
- Othonos, A.: J. Appl. Phys., 83, 1789–1830 (1998) and references therein
- Shah, J.: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Springer, Berlin (1999) and references therein
- Levy, J., Nikitin, V., Kikkawa, J.M., Cohen, A., Samarth, N., Garcia, R. and Awschalom, D.D.: *Phys. Rev. Lett.*, 76, 1948–1951 (1996)
- Cadby, A., Khalil, G., Fox, A.M. and Lidzey, D.G.: J. Appl. Phys., 103, 093715–093719 (2008)
- Schmidt, O., Bauer, M., Wiemann, C., Porath, R., Scharte, M., Andreyev, O., Schönhense, G. and Aeschlimann, M.: *Appl. Phys. B.*, 74, 223–227 (2002)
- 12) Zewail, A.H.: Science, 328, 187-193 (2010) and references therein
- 13) Takeuchi, O., Morita, R., Yamashita, M. and Shigekawa, H.: Jpn. J. Appl. Phys., 41, 4994–4997 (2002)
- Takeuchi, O., Aoyama, M., Oshima, R., Okada, Y., Oigawa, H., Sano, N., Shigekawa, H., Morita, R. and Yamashita, M.: *Appl. Phys. Lett.*, 85, 3268–3270 (2004)
- Takeuchi, O., Aoyama, M. and Shigekawa, H.: *Jpn. J. Appl. Phys.*, 44, 5354–5357 (2005)
- 16) Takeuchi, O., Aoyama, M., Kondo, M., Taninaka, A., Terada, Y. and Shigekawa, H.: *Jpn. J. Appl. Phys.*, 45, 1926–1930 (2006)
- 17) Terada, Y., Aoyama, M., Kondo, H., Taninaka, A., Takeuchi, O. and Shigekawa, H.: *Nanotechnology*, 18, 044028–044032 (2007)
- Shigekawa, H., Yoshida, S., Takeuchi, O., Aoyama, M., Terada, Y., Kondo, H. and Oigawa, H.: *Thin. Solid. Films.*, **516**, 2348–2357 (2008)
- Shigekawa, H., Takeuchi, O. and Aoyama, M.: Sci. Technol. Adv. Mater., 6, 582–588 (2005)
- 20) Terada, Y., Yoshida, S., Takeuchi, O. and Shigekawa, H.: J. Phys. Condens. Matter., 22, 264008–264015 (2010)
- Terada, Y., Yoshida, S., Takeuchi, O. and Shigekawa, H.: Nature Photonics, 4, 869–874 (2010)
- 22) Hamers, R.J. and Cahill, D.G.: Appl. Phys. Lett., 57, 2031–2033 (1990)
- 23) Weiss, S., Ogletree, D.F., Botkin, D., Salmeron, M. and Chemla, D.S.: *Appl. Phys. Lett.*, **63**, 2567–2569 (1993)
- 24) Grafström, S.: J. Appl. Phys., 91, 1717–1753 (2002)
- 25) Yoshida, S., Kanitani, Y., Oshima, R., Okada, Y., Takeuchi, O. and Shigekawa, H.: *Phys. Rev. Lett.*, **98**, 026802–026805 (2007)
- Sze, S.M.: Physics of Semiconductor Devices 2nd ed, Wiley, New York, 1–838 (1981)
- 27) Yoshida, S., Terada, Y., Oshima, R., Takeuchi, O. and Shigekawa, H.: Nanoscale., 4, 757–761 (2012)