イネキシンギャップ結合チャネルの原子分解能単粒子解析

Single-Particle Cryo-EM of an Innexin Gap Junction Channel at Atomic Resolution

大 嶋 篤 典

Atsunori Oshima

名古屋大学細胞生理学研究センター/名古屋大学大学院創薬科学研究科

要 旨 ギャップ結合チャネルは隣接する細胞において細胞質間の物質透過を担い、電気的、化学的な結合を実現している。ギャップ結合チャネルを構成するタンパク質には2つの遺伝子ファミリーが存在し、脊椎動物(脊索動物を含む)に存在するコネキシンと、無脊椎動物が持つイネキシンがある。不思議なことにこれらの間には有意なアミノ酸配列の類似性が見られず、遺伝的な関係は明確ではない。最近我々の行ったクライオ電子顕微鏡による単粒子解析で、線虫の持つイネキシン 6 (innexin(INX)-6) の原子構造が明らかとなった。先行するコネキシン 26 (connexin-26) の原子構造と比較すると、サブユニットの数は異なっているが、単量体のアレンジメントやN末端が作る漏斗状(ファネル)構造など共通点も多く存在した。本稿では INX-6 の原子構造の特徴を紹介するほか、今回のクライオ電子顕微鏡単粒子解析を行う上で、高分解能化に重要な役割を果たした試料調製法についても紹介する。

キーワード:ギャップ結合、イネキシン、クライオ電子顕微鏡、単粒子解析、クライオ電顕試料調製

1. はじめに

ギャップ結合チャネルの発見は歴史が古く, 隣接細胞間に おける電気的な結合が整流性と共に観測されたのは1950年 代である12. 日本でもこの頃電子顕微鏡の超薄切片法で ギャップ結合チャネルと思われる形態観察が行われた3). 当 初はザリガニなどの無脊椎動物を用いて研究が行われていた が、のちに高等動物でも同様の構造が見つかり⁴⁾、現在では 下等動物から高等動物に至るほぼすべての多細胞生物では, 隣接する細胞同士の電気的、化学的結合にギャップ結合チャ ネルが使われていると広く認識されている。一般にギャップ 結合とは隣接細胞間にできる2~4nmの隙間を持つ細胞間 結合構造を意味するが、その実態は複数のギャップ結合チャ ネルから成るクラスターであり、この特徴的な構造はギャッ プ結合プラークと呼ばれる. ギャップ結合チャネルの構成タ ンパク質として最初に同定されたのが脊椎動物のコネキシン (connexin, Cx) であり⁵⁾, 4回膜貫通型タンパク質で、その 標記は通常分子量の kD を表す数字を Cx の後ろにつけて示 される. コネキシンは 20 種類以上のアイソフォーム 注1) を 含むファミリーとして同定されたが、線虫やショウジョウバ エといったモデル生物の全ゲノム配列が明らかになった時, 無脊椎動物にはコネキシン遺伝子が存在しないことが明らか となった6,7). 過去にはコネキシン以外でギャップ結合チャ ネルをコードする遺伝子についての議論があったが^{8,9)},90

〒 464-8602 名古屋市千種区不老町 TEL: 052-747-6837; FAX: 052-747-6795 E-mail: atsu@cespi.nagoya-u.ac.jp

2017年8月14日受付, 2017年10月12日受理

年代終盤にイネキシン(innexin, INX)が同定され 10,11 , この論争は終結している。イネキシンはコネキシン同様 4 回膜 貫通型であると推測されるが,そのアミノ酸配列については コネキシンとの有意な相同性が見られない。これら二つのファミリーは遺伝的には祖先を異にする収斂進化の関係にあるとする記述もあるが 12,13 , 遺伝的起源の同一性に言及する記述も存在し 14 , 明確な結論は出ていない。

コネキシンは高等動物に存在してヒトの疾患との関連も知 られていることから構造研究が進んでおり、12量体でギャッ プ結合チャネルを構成する. 電子線結晶構造解析による Cx26 の三次元再構成^{15,16)}、Cx26のX線結晶構造¹⁷⁾から、チャネル の機能についてはCx26のN末端(アミノ末端)がチャネルの 孔の入り口内で漏斗状構造(ファネル)を形成して開き、そ れが構造変化を起こして物理的に孔を閉じる開閉機構が示唆 されている¹⁸⁾. ただし閉じた構造は変異体 (Cx26M34A) に由 来することから15, 生理的な閉構造を示すものかどうかは結 論が出ていない.最近の構造解析例 (Ca²⁺ を含んだ結晶化条 件での構造)ではCa²⁺の結合サイトがチャネル通路の内側の 細胞外側にある Glu47 にあることが示唆されている 19). この 研究ではCa²⁺の結合によってチャネル通路のCa²⁺結合サイト 周辺が正の静電ポテンシャルを帯びることでカチオンの流入 を遮る、というモデルが、分子動力学シミュレーションの計 算から示唆されている¹⁹⁾.しかしこの構造はN末端が可視 化されておらず、大きく開いたチャネル通路内の静電ポテン シャル変化のみが、生理的な閉構造を示しているかは不明で ある. 現在まで閉じていることが明確な野生型の高分解能構 造の報告がコネキシンの構造研究において一つもないことが、 構造に基づいた開閉機構の理解を遅らせる要因となっている.

2. 界面活性剤除去法 GraDeR

我々は線虫が持つ野生型イネキシン6(innexin6,INX-6)の高分解能構造解析を目的として,クライオ電子顕微鏡による単粒子解析を行った 20). INX-6 の精製では界面活性剤Octyl Glucose Neopentyl Glycol (OGNG) 0.1%を用いてゲル濾過クロマトグラフィーを行い,その溶出液を $5\sim10$ mg/mlに濃縮してクライオ電子顕微鏡用グリッドを作製したところ,図 1 (A) に示すクライオ電子顕微鏡像が得られた.フーリエ変換後の画像において目視で確認できる最外のThon ringの振動は6 Å分解能まで(図 1 (B) の白線)で,それ以上の高分解能側においては減衰して見えなかった.INX-6 粒子の分散度合いは良かったものの粒子の像は不鮮明で,約3,000粒子を拾い上げて解析しても,EMAN2 21 で計算した二次元クラスアベレージは二次構造の特徴が見られない不明瞭な平

均像であった(図1 (C)). 通常膜タンパク質は精製標品中に界面活性剤が含まれており、フリーの界面活性剤ミセルはタンパク質粒子のコントラストを低下させる。またクライオ電子顕微鏡用グリッドでは非常に薄い氷の作製が重要であるが、界面活性剤ミセルが存在するとカーボン膜ホール内の薄い氷の部分から粒子が排除されやすくなる 22). 膜タンパク質の精製標品中から界面活性剤ミセルを除く手法はいくつかあり、amphipol $^{\pm 2}$)の利用や nano disc $^{\pm 3}$)へ膜タンパク質を再構成させて界面活性剤フリーの緩衝液でゲル濾過クロマトグラフィーを行う、といった報告がある 23,24). あるいは界面活性剤の除去を行わず、カーボン膜ホール内の氷にも粒子が残るまでタンパク質溶液を濃縮して、グリッドを作った例も多い $^{25\sim 27}$). 我々の場合、界面活性剤を含むゲル濾過クロマトグラフィー溶出液を濃縮しただけでは INX-6 が薄い氷に埋まった理想的なクライオ電子顕微鏡用グリッドができなかったた

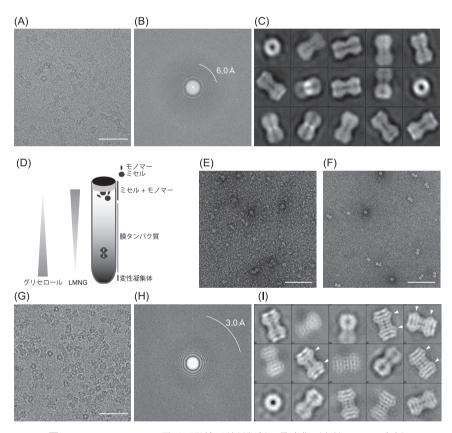


図1 INX-6 のクライオ電子顕微鏡用試料調製の最適化(文献 20 より改変)

- (A) INX-6 のゲル濾過クロマトグラフィー溶出液で作製したグリッドから得られたクライオ電子顕微鏡像. Bar = 50 nm.
- (B) (A) のフーリエ変換後の画像. 白線(最外の Thon ring)は $6\,\text{\AA}$ 分解能の位置を示す.
- (C) (A) で用いた試料で撮影したクライオ電子顕微鏡像から,EMAN2 $^{21)}$ で 3,148 個の粒子を切り出して計算した二次元クラスアベレージ.二次構造が不明瞭な平均像である.
- (D) フリーの界面活性剤ミセルを除去する GraDeR²⁸⁾ の模式図.
- (E) GraDeR を行う前の INX-6 の負染色電子顕微鏡像. バックグラウンドの白い小さな粒子はフリーの界面活性剤ミセルを示す. Bar = $100\,\mathrm{nm}$.
- (F) GraDeR を行った後の INX-6 の負染色電子顕微鏡像. Bar = 100 nm.
- (G) (F) の試料を用いて作製したグリッドから得られたクライオ電子顕微鏡像. Bar = $50\,\mathrm{nm}$.
- (H) (G) のフーリエ変換後の画像. 白線 (最外の Thon ring) は3Å分解能の位置を示す.
- (I) (G) で用いた試料で撮影したクライオ電子顕微鏡像から EMAN2 $^{21)}$ で 3,585 個の粒子を切り出して計算した二次元クラスアベレージの例.二つある膜貫通領域(矢頭)に α ベリックス構造を示す兆候が見られる.

154 顕微鏡 Vol. 52, No. 3 (2017)

め、GraDeR²⁸⁾ を用いて余分な界面活性剤の除去を行った.

GraDeR (Gradient-based Detergent Removal) は, Hauer, Gerle, Fischer らによって開発された、グリセロールを用い た密度勾配遠心法である (図 1 (D)) ²⁸⁾. ここでは試料の調製 にスイングロータ SW41Ti 用超遠心チューブを用いた. 下方 に向かって5-25%(W/V)のグリセロール勾配を形成し、同 時に別の界面活性剤 LMNG(lauryl maltose neopentyl glycol) を上方に向かって0-0.003% (W/W) になるよう, 勾配を形成 する. この最上部に予め LMNG を 0.02%になるように加え た INX-6 のゲル濾過クロマトグラフィー溶出液をロードし, 約 200,000 g で 12 時間超遠心する. 「分子量の大きい INX-6 は沈降する一方、フリーのミセルは軽いので上部に留まった まま」という理屈で両者を分離するが、この時 INX-6 は下方 に沈むほど界面活性剤の少ない溶液に晒されることになり, 通常の界面活性剤の場合には変性の危険が生じる. しかし LMNG は CMC が 0.001%と非常に低く²⁹⁾、INX-6 を取り囲 むミセルについては一緒に沈降するため、変性させずに INX-6 を沈降させることができる. ただし GraDeR の実施例 は少ないため、これが他の膜タンパク質に一般性のある性質 かどうかは不明である. 筆者の経験では、前述したように INX-6のゲル濾過クロマトグラフィー溶出液に予め LMNG を加えてから遠心チューブにロードしないと遠心後に INX-6 が変性したことから、勾配緩衝液に LMNG が入っているか らといって必ずしも膜タンパク質が安定とは限らないようで ある. またグリセロールの濃度や遠心力、遠心時間について は原著論文28)から変更しており、手掛ける膜タンパク質に よって適宜最適化する必要があるものと思われる.

GraDeR の前後における INX-6 精製標品の負染色電子顕微 鏡像を図1 (E-F) に示す. GraDeR を行う前の像ではバッ クグラウンドに細かいミセル粒子が観察されているが(図1 (E))、GraDeR を行った後はバックグランドのミセルは除去 され、かつ INX-6 チャネル粒子の向きが明瞭な電子顕微鏡像 が観察された (図 1 (F)). この INX-6 精製標品を用いてク ライオ電子顕微鏡用グリッドを作製すると、グリッド数枚に 一枚という低い頻度ではあるものの、理想的に薄い氷に包埋 された INX-6 のクライオ電子顕微鏡像が撮影できるようにな り、INX-6 チャネルの特徴が明確な粒子の像が得られた(図 1 (G)). この像のフーリエ変換後の画像では3 Å 分解能に 至る Thon ring が目視で確認された (図1 (H)). このよう な画像から粒子を約3,000個拾い、二次元クラスアベレージ を計算すると、膜貫通ヘリックスの兆候を示す平均像が得ら れた(図1(I)). こうして得られるハイクオリティーな電 子顕微鏡像のみを約1,000枚収集し、画像解析を行った.

3. INX-6 の単粒子解析による原子構造

INX-6 へミチャネル(へミチャネルはギャップ結合チャネルの半分)を囲うようにボックスサイズを 160×160 ピクセルに設定し、合計約 340,000 粒子を収集した。RELION 30 で計算した INX-6 へミチャネルの二次元クラスアベレージには

二次構造が明確に確認される平均像が現れ、中には膜貫通へ リックスのらせんの特徴を示すものも見られた(図2(A)). ただしこの時点で不鮮明なクラスを除去してもしなくても最 終的な解析結果は変わらなかったため、二次元クラスアベ レージに基づくクラスの選択は本研究において適用しなかっ た. 三次元クラス分けは対称性 C1(非対称)で計算され、5 個のクラスに分類された(図2(B)). そのうち一つのクラ スが8回回転対称(C8)に近く、最も微細な特徴を示す構造 になったため、そのクラスに入った約74,000粒子を用いて三 次元精密化の計算を行った. 対称性 C8 を仮定して計算され たマップは分解能が3.3Å(マスク時)(図3(A))と推定さ れ、得られた三次元構造はアミノ酸側鎖の密度が確認でき、 信頼性の高いモデリングが可能なものであった(図3(B) (C)). この時ギャップ結合状態の INX-6 からへミチャネル に相当する粒子を切り出しているため、向かい合うへミチャ ネルの一部がマップに入り込んできている(図3(B)、黄色 部分の密度). 当初はこれがマップのクオリティの低下につ ながることを心配したが、結果的に大きな影響は見られな かった.

本研究はイネキシンファミリーにおいて最初の原子構造であり、INX-6 ヘミチャネルのアラニン Ala7 からフェニルアラニン Phe51 までとアスパラギン酸 Asp54 からイソロイシン Ile369 までのモデリングに成功した. 特に4本の膜貫通ヘリッ

(A)

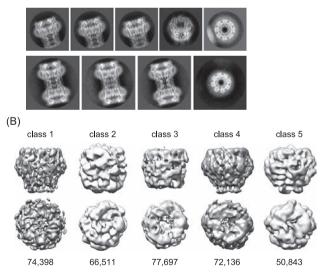


図 2 INX-6 の単粒子解析におけるクラス分け(文献 20 より 改変)

- (A) RELION $^{30)}$ で計算した二次元クラスアベレージの代表例. \land ミチャネル(上段)は 341,585 個の粒子,ギャップ結合チャネル(下段)は 35,608 個の粒子を用いた. どちらも横向きの平均像において膜貫通へリックスが筋状に確認され,らせんの特徴が見られるものも含まれる.
- (B) ヘミチャネルの三次元クラス分け、341,585 個の粒子を5 個のクラスに分けたときの三次元構造、下段の数字はクラスに分類された粒子の数を示す、クラス1の構造に最も微細で8回回転対称の特徴が出ていたため、クラス1に属した74,398 個の粒子を三次元精密化に使用した。

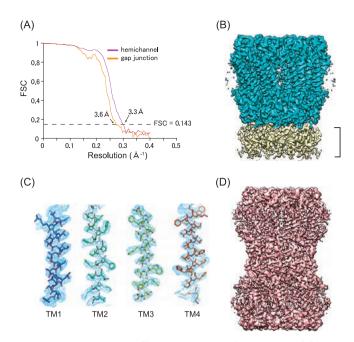


図3 INX-6 の三次元構造とモデリング(文献 20 より改変)
(A) 分解能推定のための INX-6 のへミチャネル、ギャップ結合チャネルぞれだついての Fourier shell correlation のプロット(マップ部分にマスクを使用)。分解能はヘミチャネルが 3.3 Å、ギャップ結合チャネルが 3.6 Å と推定された。
(B) 図2 (B) のクラス1に入った 74,398 個の粒子から C8 の対称性を仮定して計算した INX-6 ヘミチャネルの三次元マップ。角カッコ部分の密度は向かい合うへミチャネル部分を示す。
(C) 膜貫通ヘリックスの密度と原子モデル (PDB code: 5H1Q)。
(D) INX-6 ギャップ結合チャネルの三次元マップ。このマップは 35,608 個の粒子を使って D8 の対称性で計算された。

クス(TM1~TM4)のうち、TM2~TM4については側鎖に相当する部分の密度の分離が良く(図3(C))、その他の領域のモデリングに大きく役立った。INX-6ギャップ結合チャネルについては約35,000粒子を収集し、二次元クラスアベレージは二次構造が明らかな平均像となった(図2(A))。これらをクラス分けせずに、D8の対称性を仮定して全ての粒子を三次元精密化の計算に使用したところ、分解能3.6Å(マスク時)のマップが得られた(図3(A)、(D))。こちらはヘミチャネルのマップと比べて側鎖の分離が悪かったが、すでに組み上がったINX-6~ミチャネルの原子モデルをフィッティングして精密化を行うには十分であった。以上によりINX-6ギャップ結合チャネルの原子モデル(PDB code: 5H1R)を構築した。

4. INX-6 単量体構造の Cx26 との類似性

INX-6 の単量体構造は細胞質側を上に向けるとタツノオトシゴのような形状をしている(図 4 (A))。 $TM1 \sim TM4$ の中で最も内側に配置してチャネルの通路に面しているのは TM1 で、そこから短い N 末端領域が折れ曲がって通路の内側に面している。 $TM2 \sim TM4$ は細胞膜を出た位置でキンクしており、Cx26 では見え

ていなかった細胞質ドメインは C 末端(カルボキシ末端)の終末を除いてほぼ原子座標が置かれ、首を傾けたような配置になっている。細胞質ループ(CL)と C 末端(CT)はヘリックスーターンーヘリックス構造を多く含み、この両者が合わさって一つのコアを形成している。 C 末端のループにあるロイシン Leu347 とアスパラギン Asn348 が N 末端のループにあるアスパラギン酸 Asp25 と相互作用できる位置関係にあり、細胞質ドメインの動きが N 末端に伝わるような配置となっている。 TM2 にあるプロリン Pro122 は非常に保存度が高く、TM2 のキンクを形成している。 2 本ある細胞外ループは第一ループ(E1)に短い α ヘリックスが存在して、第二ループ(E2)に β ヘアピンが形成されている。

INX-6 単量体の構造は Cx26 の X 線結晶構造とよく似てい る (図4 (B)). Cx26 では細胞質ドメインのループと C末 端は電子密度が乏しくモデルが置かれていないが、N末端へ リックスの存在、 $TM1 \sim TM4$ の膜貫通へリックスの配置、 TM2 の Pro キンク, E1 のヘリックスと E2 のβヘアピンは いずれも共通した特徴である. 三次元構造の比較で用いられ る Dali サーバー³¹⁾ において INX-6 の原子モデルと構造が類 似したタンパク質を検索すると、Cx26の原子モデル(PDB code: 2ZW3) が Z 値 7.9 と高く、Cx26 は現在登録されている PDB データバンクの中で特に類似した構造を持つ膜タンパ ク質であると解釈される結果であった。 またコネキシンでは 細胞外ループの E1 と E2 には高度に保存されたシステイン が3か所ずつ各ループに存在しており、これらがE1とE2の ループ間で計3個のジスルフィド結合を形成している(図4 (C)) $^{17)}$. 一方、イネキシンでは高度に保存されたシステイ ンは E1 と E2 に 2 か所ずつ存在し、INX-6 の原子モデルに おいて、システイン Cys58-Cys265, Cys76-Cys248 の組み合 わせで Cx26 と同様に細胞外ループ間のジスルフィド結合を 形成していた. しかもその2か所の立体的な配置はCx26に 存在する3か所のうちの2つにほぼ一致するものであった (図4(C)). これは少なくとも細胞外ループの4つのシステ イン残基は INX-6 と Cx26 において共通して保存されたアミ ノ酸であると考えるのが自然である. この他にも TM2 のキン クにプロリン Pro122 が存在するが、Pro はコネキシンファミ リーの TM2 においても高度に保存され、これついても両ファ ミリーで保存されたアミノ酸である可能性が示唆される.

5. INX-6 ギャップ結合チャネル構造とチャネルの通路

INX-6 のギャップ結合チャネルは、コネキシン(12 量体)とは異なり、16 量体であることを筆者らは既に示した $^{32)}$ が、単粒子解析では、INX-6 のへミチャネル部分は C8、ギャップ結合チャネルとしては D8 の対称性でそれぞれ解析できており、先行結果の裏付けとなった(図 4 (D))。16 量体構造における細胞質ドメインは豊富な α ヘリックスから成る単量体の細胞質コアが楔を打ち込むように入り組んで配置している(図 4 (D)-1)。この領域の隣接サブユニット間には多数の水素結合が形成されていて、連続した屋根のような形をし

156 顕微鏡 Vol. 52, No. 3 (2017)

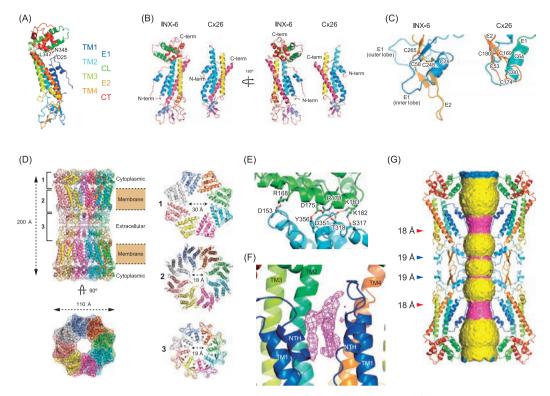


図4 INX-6の原子モデルと Cx26 との類似性(文献 20 より改変)

- (A) INX-6 の単量体構造のリボンモデル.
- (B) 単量体構造における INX-6 と $Cx26^{17)}$ との比較. 二次構造の配色は両者で統一した.
- (C) INX-6 と Cx26 の細胞外ループ間におけるジスルフィド結合の空間配置. 膜貫通領域を両者で最も重なるように配置した時の細胞外ドメインを表示した.
- (D) INX-6 ギャップ結合チャネルの全体構造. $(1 \sim 3)$ はそれぞれ角カッコで示した領域のセグメント.
- (E) 細胞質ドメインの隣接サブユニット間にできる水素結合.
- (F) 隣接サブユニットの膜貫通領域の間に見られる密度.
- (G) チャネルの通路の表示. 簡略化して4つのサブユニットのみリボンモデルで表示した. サーフェス表示はチャネルの通路を示し、マゼンタ色はその中で特に狭くなった領域を示す. 左の数字は通路の内径を示す.

INX-6 ギャップ結合チャネルの原子モデルにおいて、隣接サブユニットの膜貫通領域の間には側鎖の相互作用が見られない間隙が存在している.しかし、マップではこの領域に何らかの密度が確認され(図4(F))、おそらく生体膜中ではこの部分に脂質分子が入り込んで膜貫通領域を安定化している

ものと考えられる。チャネルの通路は4か所で狭くなってお り、2 か所は N 末端ファネルの先端部、他の2 か所は細胞外 ドメインのE1にある短いαヘリックスに囲まれている(図4(G) のマゼンタ色で示した領域). N末端ファネルの囲む部 分が最も狭いが、それでも直径は 18 Å あり、これは α ヘリッ クス1本でも優に通過できる広さである. N 末端のアミノ酸 はアラニン Ala7 から原子モデルが組まれているが、 $1 \sim 6$ 残 基は見えていないため、仮にN末端の6残基が8サブユニッ ト分存在すれば通路をふさぐことも不可能ではない. した がってこの構造が明確に開いた状態であるとは結論付けられ ないが、マップを見る限りチャネルの通路は開いていると解 釈するのが妥当である.豊富なαヘリックスを含む細胞質 ドームはN末端ファネルを細胞質側から覆うように配置し ており、INX-6 の単量体の構造で述べたように C 末端のルー プにあるロイシン Leu347 とアスパラギン Asn348 は、N末 端ファネルと TM1 の間のループに存在する Asp25 と相互作 用する距離関係にある. したがって細胞質ドームに構造的変 化が生じた場合、その動きはN末端ファネルに伝わる仕組 みになっており、細胞質ドメインがチャネルの透過活性の制

6. おわりに

ギャップ結合チャネルは多細胞生物が細胞間連絡を行うた めに不可欠な構造であるが、脊椎動物と無脊椎動物の間では ホモログと呼べない程異なるアミノ酸配列のタンパク質が ギャップ結合チャネルを形成しているのは奇妙といえる. 本 研究における INX-6 の構造は、サブユニットの数やチャネル の外径、内径が Cx26 と異なるものの、N 末端が作るファネ ル構造やチャネルの全体構造、そして単量体の構造はよく似 ていることを示した. しかし, 無脊椎動物が脊椎動物よりも サイズの大きいギャップ結合チャネルを持つ必要性は明らか ではない. 構成するサブユニットの数やチャネルのサイズは ギャップ結合チャネルが機能する上でそれほど大きな意味を 持たないのかもしれない. これまでイネキシンとコネキシン はアミノ酸配列の相同性が見られないことから、タンパク質 ファミリーとしての遺伝的な関係性は不明であるとされてき た. 筆者も当初、イネキシンとコネキシンの両ファミリーは 収斂進化した可能性を考えていた. しかし, すでに述べた構 造の類似性や保存されていると思われるアミノ酸の存在など から、類似した機能を果たす両ファミリーの関係はおそらく 収斂進化ではなく、遺伝的には同一の祖先を持ち、分岐後長 い進化の時間を経て現在の形態となった分岐進化の結果では ないかと筆者らは解釈している. この問題に関して筆者らは 進化遺伝学の専門家ではなく、明確な結論を持ち合わせてい ない、イネキシンとコネキシンはギャップ結合スーパーファ ミリーとしてカテゴライズできるものかどうか、今回の構造 研究を含めて専門家による今後の研究に期待したい.

今回解明された原子構造は開状態と解釈されるものであった。単粒子解析における三次元クラス分けでは、5つに分けたクラスの中で1つのクラスだけが原子分解能に至った。しかし低分解能で止まった他の4つクラスの構造も明確に閉じていると思われるものはなく、一旦脂質二重膜から可溶化して精製したギャップ結合チャネルは、開いてしまう傾向があると思われる。コネキシンにも同様のことが言えるが、精製したギャップ結合チャネルを生理的に閉じる条件が見つかれ

ば、今後の構造研究において開閉機構の解明が大幅に進むと 思われる。

本研究において我々が使用した GraDeR は、クライオ電子 顕微鏡用グリッド作製の効率上昇に大きく貢献した. この手 法の一般性については不明であるが、INX-6との相性は特に 良かった. GraDeR を行った後の INX-6 の持つ性質として、 グリセロールを透析除去する前であれば、4℃で数か月間安 定であり、いつでもクライオ電子顕微鏡用の試料として使用 できたことや、グリセロール除去後のタンパク質溶液を可溶 性タンパク質のように速く濃縮できる、などの特徴が見られ た。またフリーの界面活性剤ミセルを除くという目的は、ク ライオ電子顕微鏡だけでなく, 三次元結晶化や脂質二重膜へ の再構成にも応用が利く可能性がある. 一方で GraDeR の抱 える一つの問題点として、クライオ電子顕微鏡用グリッドの カーボン膜ホールの中でタンパク質粒子の分散が悪く、凝集 する傾向が挙げられる. INX-6 においても界面活性剤を含ん だゲル濾過クロマトグラフィー溶出液より, GraDeR 処理後 の方が明らかに凝集する傾向にあった. 膜タンパク質の単粒 子解析では界面活性剤を含んだまま試料作製を行ったケース も多く、複数のクライオ電子顕微鏡用試料調製法を試行錯誤 したうえで、手掛ける膜タンパク質に応じてこれらを使い分 ける必要があるかもしれない.

謝 辞

本稿で紹介した INX-6 ギャップ結合チャネルの単粒子解析は、名古屋大学の谷一寿特任教授、藤吉好則客員教授のご協力のもと行われました。また GraDeR において大阪大学 Christoph Gerle 特任准教授のご協力を得ました。ここに感謝の意を表します。

注

注1) アイソフォーム:機能が類似しているがアミノ酸配列の異なるタンパク質

注 2) amphipol: 界面活性剤として使用される,アシル鎖を持つ両 親媒性ポリマー.

注3) nano disc:脂質二重膜が膜スキャフォールドタンパク質のベルトで囲まれた構造体. 膜タンパク質の再構成に用いられる.

文 献

- 1) Furshpan, E.J. and Potter, D.D.: *Nature*, **180**, 342–343 (1957)
- 2) Furshpan, E.J. and Potter, D.D.: J. Physiol., 145, 289–325 (1959)
- 3) Hama, K.: Anat. Rec., 141, 275–293 (1961)
- 4) Robertson, J.D.: *J. Cell Biol.*, 9, 201–221 (1963)
- Nicholson, B.J., Gros, D.B., Kent, S.B., Hood, L.E. and Revel, J.P.: *J. Biol. Chem.*, 260, 6514–6517 (1985)
- 6) Adams, M.D. et al.: Science, 287, 2185-2195 (2000)
- The C. elegans Sequencing Consortium: Science, 282, 2012–2018 (1998)
- 8) Bruzzone, R. and Goodenough, D.A.: *Bioessays.*, 17, 744–745 (1995)
- 9) Finbow, M.E., Harrison, M. and Jones, P.: *Bioessays.*, 17, 247–255 (1995)

類微鏡 Vol. 52, No. 3 (2017)

- 10) Phelan, P. et al.: Nature, 391, 181-184 (1998)
- 11) Phelan, P. et al.: Trends Genet, 14, 348-349 (1998)
- 12) Alexopoulos, H. et al.: Curr Biol., 14, R879–R880 (2004)
- 13) Zakon, H.H.: Brain Behav. Evol., 59, 250–261 (2002)
- 14) Hua, V.B. et al.: J. Membr. Biol., 194, 59-76 (2003)
- 15) Oshima, A., Tani, K., Hiroaki, Y., Fujiyoshi, Y. and Sosinsky, G.E.: *Proc. Natl. Acad. Sci. USA*, 104, 10034–10039 (2007)
- 16) Oshima, A. et al.: J. Mol. Biol., 405, 724–735 (2011)
- 17) Maeda, S. et al.: Nature, 458, 597–607 (2009)
- 18) Oshima, A.: FEBS Lett., 588, 1230–1237 (2014)
- 19) Bennett, B.C. et al.: Nat. Commun., 7, 8770 (2016)
- Oshima, A., Tani, K. and Fujiyoshi, Y.: Nat. Commun., 7, 13681 doi: 10.1038/ncomms13681 (2016)
- 21) Tang, G. et al.: J. Struct. Biol., 157, 38–46 (2007)
- Cheng, Y., Grigorieff, N., Penczek, P.A. and Walz, T.: Cell, 161, 438–449 (2015)
- Liao, M., Cao, E., Julius, D. and Cheng, Y.: Nature, 504, 107–112 (2013)
- 24) Gao, Y., Cao, E., Julius, D. and Cheng, Y.: Nature, 534, 347–351 (2016)
- 25) Matthies, D. et al.: Cell, 164, 747-756 (2016)
- 26) Lee, C.H. and MacKinnon, R.: Cell, 168, 111–120 (2017)

- 27) Hite, R.K. and MacKinnon, R.: Cell, 168, 390–399 (2017)
- 28) Hauer, F. et al.: Structure, 23, 1769-1775 (2015)
- 29) Chae, P.S. et al.: Nature Methods, 7, 1003–1008 (2010)
- 30) Scheres, S.H.: J. Struct. Biol., 180, 519–530 (2012)
- Holm, L. and Rosenström, P.: Nucl. Acids Res., 38, W545–W549 (2010)
- Oshima, A., Matsuzawa, T., Murata, K., Tani, K. and Fujiyoshi, Y.: J. Mol. Biol., 428, 1227–1236 (2016)
- 33) Stergiopoulos, K. et al.: Circ. Res., 84, 1144–1155 (1999)
- 34) Ek-Vitorin, J.F. et al.: Biophys. J., 71, 1273–1284 (1996)
- 35) Wang, X.G. and Peracchia, C.: Proceedings of the 8th International Gap Junction Conference, Key Largo, Florida. Amsterdam: IOS Press, 35–39 (1998)
- Giaume, C., Spira, M.E. and Korn, H.: Neurosci. Lett., 17, 197–202 (1980)
- Obaid, A.L., Socolar, S.J. and Rose, B.: J. Membr. Biol., 73, 69–89
 (1983)
- Moreno, A.P., Spray, D.C. and Ramon, F.: Am. J. Physiol., 260, C1028–C1038 (1991)
- Landesman, Y., White, T.W., Starich, T.A., Shaw, J.E., Goodenough,
 D.A. and Paul, D.L.: J. Cell Sci., 112, 2391–2396 (1999)
- 40) Anderson, K.L. and Woodruff, R.I.: Dev. Biol., 239, 68-78 (2001)