日本顕微鏡学会 第60回記念シンポジウム(合同開催:第59回九州支部集会・学術講演会)プログラム日程

12月1日(金)						
	A 会場	B 会場	C 会場			
10:00	受付	開始 九州支部 評議員会・集会				
12:00 - 12:50	Microscopy ランチョンセミナー (Microscopy 編集委員会)					
12:50 - 13:00	体	憩				
13:00 - 13:05	開会挨拶(日本顕微鏡学会 牛木 辰男 会長)					
13:05 - 13:45	基調講演 (材料・装置系) 倉田 博基(京都大学)					
13:45 - 14:25	基調講演 (医学・生物系) 牛木 辰男 (新潟大学)		ポスター発表			
14:25 - 14:40	休	憩				
14:40 - 16:40	真の構造を求めて:挑戦的顕微鏡研究開発 シンポジスト 小瀬 洋一, 西谷 智博, 八木 明, 丹羽 一樹	再生医療研究に資する顕微サイエンス シンポジスト: 西村 智, 澤口 朗 タンパク質構造を解き明かす新たな研究手法 シンポジスト Radostin Danev, 福田 善之, 守屋 俊夫	休憩コーナー			
16:40 - 17:00	体	憩				
17:00 - 17:40	第60回記念講演 (材料・装置系) 友清 芳二 (九州大学)					
17:40 - 18:20	第60回記念講演 (医学・生物系) 柴田 洋三郎 (福岡県立大学)					
18:20 - 18:30	移	動				
18:30 - 20:30		第60回記念シンポジウ	ム懇親会			

12月2日(土)							
	A 会場		B 会場	C 会場			
9:20 - 11:30	3 次元: ソフトからハードへ・・・ シンポジスト 馬場 則男, 安永 卓生, 太田 啓介 陣内 浩司, 松村 晶		微生物を取り巻く大宇宙 シンポジスト 宮崎 亮. 久堀 智子. 植松 勝之 宮崎 直幸. 本間 道夫	ポスター発表 休憩コーナー			
11:30 - 11:40		休	憩				
11:40 - 12:50	アカデミック ランチョンセミナー (NPO法人 綜合画像研究支援)						
12:50 - 13:30				ポスター討論			
13:30 - 13:40		休	憩				
13:40 - 15:20	<第60回記念特別企画> 顕微サイエンスの豊かな未来を育む 企業・産学連携の理想を求めて 基調講演 小路武彦、宮崎裕也、諸根信弘						
15:20 - 15:30		休	憩				
15:30 - 16:50	学生優秀演題 口頭発表 前田拓也,麻生浩平,有冨 翔大,加藤 遼馬 菊池 章吾,寺田 一真,肥後 智也						
16:50 - 17:00		移	動				
17:00 - 19:30			学生歓迎交流会・将来展覧	型意見交換会			

プログラム

第1日目 12月1日(金)

11:20 ~ 12:00 B 会場 九州支部 評議員会・集会

12:00 ~ 12:50 A 会場 Microscopy ランチョンセミナー

「顕微鏡分野における世界の学術出版動向」 (Microscopy 編集委員会)

12:50 ~ 13:00 休 憩

13:00 ~ 13:05 A 会場 開会の挨拶 会長 牛木 辰男 (新潟大学)

13:05 ~ 13:45 A 会場 基調講演 I PL-1

座長 松村 晶(九州大学)

「精密構造観察と状態分析」 Precise structural observation and state analysis 倉田 博基 (京都大学 化学研究所)

13:45 ~ 14:25 A 会場 基調講演 II PL-2

座長 太田 啓介(久留米大学)

「顕微鏡と生物学」 Microscopy and Biology

牛木 辰男 (新潟大学 医学部)

14:25 ~ 14:40 休憩

14:40 ~ 16:40 セッション 1S-A1 「真の構造を求めて:挑戦的顕微鏡研究開発」

座長 臼倉 治郎(名古屋大学)·成田 哲博(名古屋大学)

14:40 ~ 15:10 SEM STEM 同時計測で簡便なクライオ電顕開発

Development of an Easy-to-use Cryo-electron Microscope for Simultaneous Observation of SEM and Transmission Images.

<u>小瀬 洋一</u>¹, 砂押 毅志 ¹, 丹波 裕介 ¹, 長久保 康平 ¹, 水尾 考志 ¹, 東 淳三 ¹, 多持 隆一郎 ¹, 大隅 正子 ³, 成田 哲博 ², 松本 友治 ², 臼倉 英治 ², 臼倉 治郎 ² ¹Hitachi High-Technologies Corporation, ²Graduate School of Science, Nagoya University, and ³Japan Women's University.

15:10 ~ 15:40 シングルショット観測をもたらす

GaN 半導体フォトカソードによる電子ビーム技術革新

Innovate Electron Beam by GaN Semiconductor Photocathodes Conducive to Single Shot Imaging.

西谷 智博 ^{1,2}, 成田 哲博 ³, 冨田 健 ⁴, 北村 真一 ⁴, 目黒 多加志 ⁵, 飯島 北斗 ⁵, 渕 真悟 ⁶, 田渕 雅夫 ², 本田 善央 ⁷, 天野 浩 ⁷

¹Institute for Advanced Research and ²Synchrotron Radiation Research center, Nagoya University, ³Graduate School of Sciences, The Structural Biology Research Center and Division of Biological Science, Nagoya University, ⁴JEOL Ltd., Tokyo, Japan, ⁵Department of Physics, Faculty of Science Division II, Tokyo University of Science, ⁶College of Science and Engineering, Aoyama Gakuin University, and ⁷Institute of Materials and Systems for Sustainability, Nagoya University.

15:40 ~ 16:10 チップスキャン型原子間力顕微鏡を用いた

ナノダイナミクス観察システム (BIXAM) の開発と生物応用

Development and Biological Application of Nanodynamics Observation System (BIXAM) by Tip-scan Atomic Force Microscopy.

<u>八木 明</u>¹, 酒井 信明 ¹, 植草 良嗣 ¹, 今岡 由佳 ¹, 伊東 修一 ¹Olympus Corporation, Tokyo, Japan.

16:10 ~ 16:40 単一光子で分光可能な超伝導光検出器のバイオ応用

Superconducting Single Photon Spectral Detector for Bio-application.

丹羽 一樹¹, 沼田 孝之¹, 服部 香里¹, 福田 大治¹

Research Institute for Physical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST).

【B会場】

14:40 ~ 15:40 セッション 1S-B1 「再生医療研究に資する顕微サイエンス」

座長 森本 景之 (産業医科大学)

14:40 ~ 15:10

Broader, Longer, and Deeper in Vivo Scalable Imaging of Hemostasis, Inflammation, and Regenerative Responses.

西村 智1

¹Center for Molecular Medicine, Jichi Medical University

15:10 ~ 15:40 iPS 細胞由来血小板製剤の臨床応用に向けた簡便迅速電顕解析法の確立 Backscattered-electron Imaging for Ultrastructural Evaluation of the Blood Platelet Profile: with a Provision of Human iPS Cell-derived Platelets Production for Clinical Transfusion.

澤口 朗1

¹Division of Ultrastructural Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki

15:40 ~ 16:40 セッション 1S-B2 「タンパク質構造を解き明かす新たな研究手法」

座長 村田 和義(生理学研究所)

15:40 ~ 16:00

Single Particle Analysis Applications of the Volta Phase Plate.

Radostin Danev¹, Maryam Khoshouei¹, Wolfgang Baumeister¹

¹Max Planck Institute of Biochemistry, Germany

16:00 ~ 16:20 ボルタ位相板を用いたクライオ電子線トモグラフィーによる 細胞内巨大分子複合体の構造解析

> In Situ Structural Studies of Macro Molecular Complexes in Cells by Cryo-electron Tomography with Volta Phase Plate.

福田 善之¹, Florian Beck¹, Wolfgang Baumeister¹

¹Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Germany

16:20 ~ 16:40 SPHIRE:極低温電子顕微鏡法による近原子分解能構造決定のための 自動検証機構を備えたユーザーフレンドリーパイプライン

SPHIRE: User-friendly Pipeline for Near-atomic Resolution Cryo-EM Structure Determination with Automatic Validation Mechanisms.

守屋 俊夫¹, Markus Stabrin¹, Michael Saur¹, Felipe Merino¹, Thorsten Wagner¹,

Zhong Huang², Christos Gatsogiannis¹, Pawel Penczek², Stefan Raunser¹

16:40 ~ 17:00 休 憩

17:00 ~ 17:40 A 会場 第 60 回記念講演 Ⅰ ML-1

座長 波多 聰(九州大学)

「透過電子顕微鏡法今昔~一材料研究者が見た50年間の変遷~」

Past and present of the transmission electron microscopy

~overview of 50 years by one of the materials scientists ~

友清 芳二 (サイエンス福岡クラブ代表/九州大学名誉教授)

17:40 ~ 18:20 A 会場 第 60 回記念講演 Ⅱ ML-2

座長 菱川 善隆 (宮崎大学)

「心臓拍動の構造的基盤」 Structure Basis of Heart Rhythm

柴田 洋三郎 (福岡県立大学/九州大学名誉教授)

18:20 ~ 18:30 休憩・移動

¹Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Germany, and ²Department of Biochemistry and Molecular Biology, The University of Texas, Houston Medical School, USA.

第2日目 12月2日(土)

【A会場】

9:20 ~ 11:30 セッション 2S-A1 「3 次元:ソフトからハードへ・・・」

座長 金子 賢治 (九州大学)

9:20 ~ 9:25 イントロダクション

9:25 ~ 9:50 電子線トモグラフィにおける

最近の再構成法の進展と新奇な濃度量子単位に基づく再構成法

A Novel Gray-level Quantization-unit-based Reconstruction Method and Recent Progress of Other Methods in Electron Tomography.

馬場 則男1,增本 奉之1,馬場 美鈴2

¹Major of informatics, Graduate School, Kogakuin University, and ²Research Institute for Science and Technology, Kogakuin University.

9:50 ~ 10:15 三次元クライオ電子顕微鏡による細胞アーキテクチャの解明

Cell Architecture Elucidated by Three-dimensional Cryo-electron Microscopy.

安永 卓生 1,2, 荒牧 慎二 1, 肥後 智也 1

¹Dept. of Biosci. and Bioinfo., School of Comp. Sci. and Sys. Eng., Kyushu Institute of Technology, and ²ABiS, Japan.

10:15 ~ 10:40 電子顕微鏡を用いた生体組織の三次元解析法

Electron Microscopic Three-dimensional Visualization of Cellular Architecture.

太田 啓介 1,2, 中村 桂一郎 1

¹Depy. of Anat., and ²Advanced Imaging Res. Center, Kurume University School of Medicine.

10:40 ~ 11:05 ソフトマテリアルのための電子線トモグラフィ

Soft Material Electron Tomography.

陣内 浩司¹, 樋口 剛志 ¹, Xiaodong Zhuge², 熊本 明仁 ³, Kees Joost Batenburg^{2,4}, 幾原 雄一 ³

¹Institute of Multidisciplinary Research for Advanced Materials, Tohoku Univ., ²Centrum Wiskunde and Informatica, The Netherlands, ³Institute of Engineering Innovation, School of Engineering, The Univ. of Tokyo, and ⁴Mathematical Institute, Leiden Univ., The Netherlands.

11:05 ~ 11:30 ナノ粒子の立体構造・形態解析の進展

Recent Progress in 3-dimensional Structure Analysis of Nanoparticles.

松村 晶 1,2,3,山本 知一 1,3,重松 晃次 1,麻生 浩平 1

¹Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, ²The Ultramicroscopy Research Center, Kyushu University, and ³JST-ACCEL, Tokyo, Japan.

【B会場】

9:20 ~ 11:30 セッション 2S-B1 「微生物を取り巻く大宇宙」

座長 山田 博之 (結核予防会 結核研究所)・山口 正視 (千葉大学)

9:20 ~ 9:25 イントロダクション

9:25 ~ 9:50 表現型の不均一性 - 1 細胞レベルの個性と集団における役割

Phenotypic Heterogeneity - Cellular Individuality and Collective Functionality.

宮崎 亮 1,2

¹Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, and ²Faculty of Life and Environmental Sciences, University of Tsukuba.

9:50 ~ 10:15 宿主オートファジー関連システムとレジオネラ

Autophagy-related Host System and Legionella.

久堀 智子^{1,2}, Andree Hubber¹, Xuan Than Bui¹, 永井 宏樹^{1,2}

¹Department of Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, and ²Department of Microbiology, Graduate School of Medicine, Gifu University.

 $10:15 \sim 10:40$ Array Tomography 法による有孔虫の全細胞質の三次元構造解析

Three-dimensional Analysis of the Whole Cytoplasm of Foraminifera Using Array Tomography Method.

植松 勝之¹, Chong Chen², 木元 克典²

¹Marine Works Japan LTD, and ²Japan Agency for Marine-Earth Science and Technology.

10:40 ~ 11:05 ファージ療法の実用化を目指した

ブドウ球菌ファージのクライオ電顕構造解析

Structural Analysis of *Staphylococcus* Phages by Cryo-electron Microscopy, Aimed for the Application of Phage Therapy.

宮崎 直幸 1, 2, 内山 淳平 3, 松崎 茂展 4, 村田 和義 2, 岩崎 憲治 1

¹Institute for Protein Research, Osaka University, ²National Institute for Physiological Sciences, ³School of Veterinary Medicine, Azabu University, and ⁴Kochi Medical School, Kochi University.

<u>本間 道夫</u>1

¹Division of Biological Science, Graduate School of Science, Nagoya University

11:30 ~ 11:40 休 憩

11:40 ~ 12:50 A 会場 アカデミックランチョンセミナー

「研究指導者育成の現況と異分野(特にスポーツ分野)における指導論に 関する調査研究について」(NPO法人綜合画像研究支援)

安永 卓生 (九州工業大学)

12:50 ~	13:30	C会場	ポスタ-	一討論

13:30 ~ 13:40 休 憩

13:40 ~ 15:20 A 会場 特別企画

「顕微サイエンスの豊かな未来を育む企業・産学連携の理想を求めて」

13:40 - 13:45 イントロダクション

13:45 - 14:10 産学連携事業に於けるバイオサイエンス分野の課題:

長崎発医エハイブリッド人材育成事業から学ぶこと 小路 武彦(長崎大学)

- 14:10 14:35 九州発の電顕ホルダー開発における産学連携の経緯と実績について 宮崎裕也(株式会社メルビル)
- 14:35 15:00 英国の顕微サイエンスと薬学で展開される産学官連携 諸根 信弘 (英国レスター大学)

15:00 - 15:20 公開討論

15:20 ~ 15:30 休憩

15:30 ~ 16:50 A 会場 学生優秀演題口頭発表

15:30 ~ 15:40

Atomic resolution HAADF-STEM study of precipitates in an Al-Mg-Si alloy.

Takuya Maeda¹, Yuki Koshino^{1,2}, Takuya Nanba¹, Yukio Sato¹, Ryo Teranishi¹, Yasuhiro Aruga², and Kenji Kaneko¹

¹Department of Materials Science and Engineering, Kyushu University, and ²Kobe Steel, Ltd., Kobe.

 $15:40 \sim 15:50$

Lattice Strain Analysis in Gold Nanorods by Means of Atomic Resolution HAADF-STEM Experiments and Molecular Dynamics Simulations.

Kohei Aso¹, Jens Maebe^{1, 2}, Tomokazu Yamamoto¹, Koji Shigematsu¹ and Syo Matsumura^{1,3}
¹Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, ²Department of Solid State Sciences, Ghent University, Ghent, Belgium, and ³The Ultramicroscopy Research Center, Kyushu University.

15:50 ~ 16:00

Microstructure Analysis of Phase Separation in VO₂ Thin Films

Shodai Aritomi¹, Youngji Cho¹, Tomokazu Yamamoto¹, Teruo Kanki², Hidekazu Tanaka², and Yasukazu Murakami^{1,3}

¹Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, ²The Institute of Scientific and Industrial Research, Osaka University, and ³The Ultramicroscopy Research Center, Kyushu University.

16:00 ~ 16:10

Strain Distribution Due to Martensitic Transformation in Fe-Ni Alloy Under Hydrogen Influence.

Ryoma Kato¹, Tatsuya Morikawa², and Masaki Tanaka²

¹Graduate student, Department of Materials Science and Engineering, Kyushu University, and ²Department of Materials Science and Engineering, Kyushu University.

16:10 ~ 16:20

Development of a 2000 K Class High Temperature Sample Holder for Transmission Electron Microscopy.

Shogo Kikuchi¹, Manabu Tezura¹, Tomo-o Terasawa^{1,2}, and Tokushi Kizuka¹

¹Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, and ²Institute of Materials and Systems for Sustainability, Nagoya University.

16:20 ~ 16:30

Three-dimensional Trajectory Simulation of Scattered Electrons in Scanning Electron Microscope Specimen Chamber.

Kazumasa Terada¹, Yoshifumi Hagiwara¹, and Masatoshi Kotera¹ Osaka Institute of Technology, Osaka, Japan.

16:30 ~ 16:40

Molecular Mechanism of Actin Cytoskeleton Repair in Nerve Cell Elucidated by Light and Electron Microscopy.

Tomoya Higo¹, Shinji Aramaki², and Takuo Yasunaga³

¹Department of Creative Informatics, Kyushu Institute of Technology, Fukuoka, Japan, ²TVIPS GmbH, Germany, and ³Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan.

16:40 ~ 16:50 学生優秀演題審査員講評

16:50 ~ 17:00 休憩・移動

17:00 ~ 19:30 B·C 会場 **学生歓迎交流会・将来展望意見交換会**

一般演題 (ポスター発表)

【 医学・生物学系 】

PB-01 失敗しない確実な連続超薄切片作製法

Reliable Method for Obtaining Serial Ultrathin Sections in Transmission Electron Microscopy.

Masashi Yamaguchi¹, Shigeo Kita², Setsuo Maruta³, and Hiroji Chibana¹

¹Medical Mycology Research Center, Chiba University, Chiba, ²Tokyo Women's Medical University, and ³Nisshin EM Co. Ltd., Japan.

PB-02 深海で発見した不定形細菌のストラクトーム解析

Structome Analysis of Amorphous Bacteria Discovered in the Deep Sea in Japan.

Masashi Yamaguchi¹, Hiroyuki Yamada², and Hiroji Chibana¹

¹Medical Mycology Research Center, Chiba University, and ²Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis.

PB-03 Cryo-TEM 観察における抗酸菌の単個菌菌体サイズ多様性についての検討

Variety of Single Cell Shape Property in Mycobacterial Species Examined with Cryo-TEM.

Hiroyuki Yamada¹, Masashi Yamaguchi², Kinuyo Chikamatsu¹, Akio Aono¹, Yuriko Igarashi¹, Yoshiro Murase¹, Akiko Takaki¹, and Satoshi Mitarai¹

¹Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, and ²Medical Mycology Research Center, Chiba University.

PB-04 Simultaneous Detection of Multiple mRNAs Using FRET Based Molecular Beacon Probes by *In Situ* Hybridization.

Narantsog Choijookhuu¹, Takumi Ishizuka², Yan Xu², Takehiko Koji³, and Yoshitaka Hishikawa¹

¹Department of Anatomy, Histochemistry and Cell Biology and ²Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, and ³Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences.

PB-05 糖尿病性腎における O-GlcNAc 化アクチンと

O-リン酸化アクチンの局在:免疫組織化学的解析

Localization of the O-GlcNAcylated Actin and O-phosphorylated Actin in the Diabetic Kidney: Immunohistochemical Study.

Yoshihiro Akimoto¹, KunimasaYan², Yuri Miura³, Tosifusa Toda⁴, Toshiyuki Fukutomi⁵, Daisuke Sugahara¹, Akihiko Kudo¹, Gerald W. Hart⁶, Tamao Endo³, and Hayato Kawakami¹ Kyorin University School of Medicine, Department of Anatomy, and ²Department of Pediatrics, ³ Tokyo Metropolitan Institute of Gerontology, Research Team for Mechanism of Aging, ⁴Yokohama City University, Advanced Medical Research Center, ⁵Kyorin University School of Medicine, Department of Pharmacology and Toxicology, and ⁶Johns Hopkins University School of Medicine, Department of Biological Chemistry, Baltimore, USA.

PB-06 細胞の局所における分子ダイナミクスと細胞全体で見られる事象を並行して

1分間隔で記録する局所・大局ライブイメージグ顕微鏡(GLIM)システム

Global-local Live Imaging Microscope (GLIM) System to Record the Local Molecular Dynamics and the Whole Cell Events in Parallel at a One-minute Time-resolution.

Yoshinobu Mineyuki^{1,2}, Daisuke Tamaoki^{1,2,3}, Katsumoto Umano^{2,4}, and Kazuyuki Ishiwata^{2,5}
¹Graduate School of Life Science, University of Hyogo, ²JST Sentan, Japan, ³Graduate School of Science and Engineering, University of Toyama, ⁴Mitani Corporation, and ⁵Nikon Instech Co. Ltd.

PB-07 ストラクトーム解析に基づく抗酸菌および大腸菌菌体の三次元再構築

Three-dimensional Reconstruction of Mycobacteria and *Escherichia coli* Based on the Structome Analysis.

Hiroyuki Yamada¹, Masashi Yamaguchi², Kinuyo Chikamatsu¹, Akio Aono¹, Yuriko Igarashi¹, Yoshiro Murase¹, Akiko Takaki¹, and Satoshi Mitarai¹

¹Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Anti-Tuberculosis Association, Kiyose, Japan, and ²Medical Mycology Research Center, Chiba University.

PB-08 低温電子顕微鏡法による回転型プロトンATP アーゼ/合成酵素の構造解析 Structural Analysis of Rotary H+-ATPase/Synthase by Cryo-Electron Microscopy Kaoru Mitsuoka¹, Atsuoka Nakanishi², Jun-ichi Kishikawa², and Ken Yokoyama² ¹Research Center for Ultra-High Voltage Microscopy, Osaka University, Osaka, Japan, and ²Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan.

PB-09 微小管結合タンパク質アルファシヌクレインの神経軸索内輸送における機能解析 Alpha-synuclein Binds Unconventional Microtubules That Have a Unique Function. Shiori Toba^{1,2}, Mingyue Jin¹, Masami Yamada¹, Sakiko Matsumoto¹, Takuo Yasunaga^{3,4,5}, Yuko Fukunaga^{6,7}, Atsuo Miyazawa^{6,7}, Hiroaki Kojima⁸, Yoshiyuki Arai⁹, Takeharu Nagai⁹ and Shinji Hirotsune

¹Osaka City Univ. Grad. Sch. of Medicine, ²Present address: Emergency Medical Technology, Hirosaki University of Health and Welfare Junior College, ³Faculty of Computer Science and Systems Engineering, Kyushu Inst. of Technology, ⁴JST-SENTAN, ⁵JST-CREST, ⁶Grad. Sch. of Life Science, Univ. of Hyogo, ⁷RSC-Univ. of Hyogo Leading Program Center, RIKEN SPring-8 Center, ⁸Advanced ICT Research Inst., National Inst. of Information and Communications Technology, and ⁹Inst. of Scientific and Industrial Research, Osaka Univ.

PB-10 細胞機能に関わる細胞質 pH の高感度イメージング

Highly Sensitive Fluorescence Imaging of the Cytoplasmic pH Related to the Cellular Functions.

Yusuke V. Morimoto¹

¹Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan.

PB-11 神経細胞における細胞骨格アクチンの修復の分子メカニズム

Molecular Mechanism of Actin Cytoskeleton Repair in Nerve Cell Elucidated by Light and Electron Microscopy.

Tomoya Higo¹, Shinji Aramaki², and Takuo Yasunaga³

¹Department of Creative Informatics, Kyushu Institute of Technology, Fukuoka, Japan, ²TVIPS GmbH, Germany, and ³Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan.

PB-12 Cryo-TEM と ASEM によるタンパク質と組織の親水環境での観察

Microscopy of Molecular Complexes, Cells and Tissues in Hydrophilic Environments Using Cryo-TEM and ASEM.

Chikara Sato¹, Masaaki Kawata², Masataka Ohashi¹, Mitsuru Ikeda¹, Masanori Koshino³, Toshiko Yamazawa², Tatsuhiko Ebihara¹, Mari Sato¹, Nassirhadjy Memtily⁵
¹Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), ²CD-FMat, National Institute of Advanced Industrial Science and Technology (AIST), ³Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), ⁴The Jikei University School of Medicine, and ⁵Traditional Uyghur Medicine Institute of Xinjiang Medical University, Urumqi, China.

PB-13 小さな膜タンパク質 KcsA のクライオ電子顕微鏡法による構造解析の取り組み

An Approach to Structural Analysis of a Small Membrane Protein KcsA by Cryoelectron Microscopy.

Hiroko Takazaki¹, Hirofumi Shimizu², Naoko Kajimura³, Kaoru Mitsuoka³, and Takuo Yasunaga¹

¹Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, ²Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, and ³Research Center for Ultra-High Voltage Electron Microscopy, Osaka University.

PB-14 導電性物質を試料前処理に用いた電子顕微鏡観察

A Simple Sample Preparation Technique for Morphological Observation of Wet Inorganic and Biological Materials Using Conductive Materials.

Chisato Takahashi¹ and Hiromitsu Yamamoto¹

¹Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, Aichi, Japan.

【 材料·装置系 】

PM-01 直交配置型の大面積 EDS システムによる

検出感度の角度依存性の少ない EDS トモグラフィ

Near Shadowless EDS Tomography Realized by Single Large Sized SDD Detector for Microtomed Sample.

Yoshitaka Aoyama¹, Noriaki Endo, Eiji Okunishi, Takeo Sasaki, Yorinobu Iwasawa¹, and Yukihito Kondo¹

¹JEOL Ltd., Tokyo, Japan.

PM-02 自動収差補正装置と Cold-FEG を搭載した

透過電子顕微鏡による低加速電圧原子分解能観察と分析

Atomic Resolution Observation and Analysis at Low Accelerating Voltage in Transmission Electron Microscopy with Auto Aberration Corrector and Cold-FEG Hiroki Hashiguchi¹, Eiji Okunishi¹, Noriaki Endo¹, and Yukihito Kondo¹

¹JEOL Ltd., Tokyo, Japan.

PM-03 高速ピクセル型 STEM 検出器の開発とその応用

Development of Fast Pixelated STEM Detector and Its Applications.

Ryusuke Sagawa¹, Hiroki Hashiguchi¹, Akiho Nakamura¹, and Yukihito Kondo¹ JEOL Ltd., Tokyo, Japan.

PM-04 電子線ホログラフィーによる絶縁体間の2次電子挙動のその場観察

Electron Holographic Observation of Secondary Electrons between Insulating Materials

Zentaro Akase¹, Mitsuaki Higo¹, Hideyuki Magara¹, Takafumi Sato¹, Daisuke Shindo^{1, 2}, Kodai Niitsu², Keiko Shimada², and Nobuhiko Ohno^{3,4}

¹Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, ²RIKEN Center for Emergent Matter Science (CEMS), ³Department of Anatomy, School of Medicine, Jichi Medical University, and ⁴Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences.

PM-05 DPC-STEM 法を用いたポリマー材料の相分離構造の無染色観察

Visualizations of Phase-separated Structures of Polymer Materials Using Differential Phase Contrast Scanning Transmission Electron Microscopy without Electron Staining.

Shin Inamoto¹, Akiyo Yoshida¹, Tsukasa Koyama¹, and Yuji Otsuka¹

Morphological Research Laboratory, Toray Research Center, Inc., Otsu, Japan.

PM-06 Atomic resolution HAADF-STEM study of precipitates in an Al-Mg-Si alloy.

Takuya Maeda¹, Yuki Koshino^{1,2}, Takuya Nanba¹, Yukio Sato¹, Ryo Teranishi¹, Yasuhiro Aruga², and Kenji Kaneko¹

¹Department of Materials Science and Engineering, Kyushu University, and ²Kobe Steel, Ltd., Kobe.

PM-07 Fine Structure Analysis of High Temperature Heat Treated SUSXM15J1 Using FIB-SEM Tomography.

Minoru Ochi¹, Ryo Teranishi¹, Yukio Sato¹, Junichi Hamada², Chikako Takushima², Toru Hara³, and Kenji Kaneko¹

¹Department of Materials Science and Engineering, Kyushu University, ²Research and Development Center, Nippon Steel and Sumikin Stainless Steel Corporation, and ³Research Center for Structural Materials, National Institute for Materials Science.

PM-08 奈良県天川村産イリディセントガーネットの CBED 分析

CBED analysis of iridescent garnets from Tenkawa, Nara Prefecture, Japan Akira Miyake¹, Yohei Igami¹, Yuh Chyuan Chang¹, Norimasa Shimobayashi¹, and Kenji Tsuda²

¹Faculty of Science, Kyoto University, and ²FRIS, Tohoku University.

PM-09 Microstructure of Ti-Nb-Ag Immiscible Alloys with Liquid Phase Separation.

Takeshi Nagase^{1,2}, Megumi Matsumoto³, and Yoshinkazu Fujii⁴

¹Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan, ²Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Japan, ³Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, and ⁴Center for Supports to Research and Education Activities, Kobe University, Japan.

PM-10 電圧印加その場走査透過型電子顕微鏡観察における原子位置精度の評価

Evaluation of Atomic Position Precision in Electrical Biasing In-situ Scanning Transmission Electron Microscopy Observation.

Yukio Sato¹, Takashi Gondo², Hiroya Miyazaki², Ryo Teranishi¹, and Kenji Kaneko¹
¹Department of Materials Science and Engineering, Kyushu University and ²Mel-Build Corporation.

PM-11 原子分解能 HAADF-STEM 観察および

分子動力学計算による金ナノロッドの格子ひずみ解析

Lattice Strain Analysis in Gold Nanorods by Means of Atomic Resolution HAADF-STEM Experiments and Molecular Dynamics Simulations.

Kohei Aso¹, Jens Maebe^{1, 2}, Tomokazu Yamamoto¹, Koji Shigematsu¹ and Syo Matsumura^{1,3}
¹Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, ²Department of Solid State Sciences, Ghent University, Ghent, Belgium, and ³The Ultramicroscopy Research Center, Kyushu University.

PM-12 VO₂薄膜における相分離組織の解析

Microstructure Analysis of Phase Separation in VO₂ Thin Films

Shodai Aritomi¹, Youngji Cho¹, Tomokazu Yamamoto¹, Teruo Kanki², Hidekazu Tanaka², and Yasukazu Murakami^{1,3}

¹Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, ²The Institute of Scientific and Industrial Research, Osaka University, and ³The Ultramicroscopy Research Center, Kyushu University.

PM-13 固体酸化物形燃料電池 Ni-ScSZ アノードの酸化・還元反応その場 TEM 観察
In Situ TEM Study on Redox Cycling of Ni-ScSZ Anode in Solid Oxide Fuel Cells.
Junko Matsuda¹, Tatsuya Kawasaki², Tsutomu Kawabata³, Shunsuke Taniguchi^{3, 4}, and Kazunari Sasaki^{1, 2, 3, 4}

¹International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) and ²Graduate School of Engineering, Kyushu University, ³International Research Center for Hydrogen Energy, Kyushu University, and ⁴Next-Generation Fuel Cell Research Center (NEXT-FC), Kyushu University.

PM-14 Fe-Ni 合金のマルテンサイト変態で生じた局所ひずみ分布に及ぼす水素の影響 Strain Distribution Due to Martensitic Transformation in Fe-Ni Alloy Under Hydrogen Influence.

Ryoma Kato¹, Tatsuya Morikawa², and Masaki Tanaka²

¹Graduate student, Department of Materials Science and Engineering, Kyushu University, and ²Department of Materials Science and Engineering, Kyushu University.

PM-15 ハードウェア/ソフトウェア開発による電子線トモグラフィー実験の高機能化 Hardware/Software Developments Toward Functional Electron Tomography Experiments.

Satoshi Hata¹, Hikaru Saito¹, Kana L. Hasezaki¹, Mitsuhiro Murayama², Kazuhisa Sato³, Hiroya Miyazaki⁴, Takashi Gondo⁴, Shinsuke Miyazaki⁵, Katsumi Kawamoto⁶, and Hiromitsu Furukawa⁶

¹Kyushu University, Japan, ²Virginia Tech, USA, ³Osaka University, Japan, ⁴Mel-Build, Japan, ⁵Thermo Fisher Scientific, USA, and ⁶System In Frontier, Japan.

PM-16 合金ナノ粒子の原子分解能トモグラフィー再構成と再構成パラメータの検討 Atomic-Resolution Tomography of Metal Alloy Nanoparticles: The Effects of Reconstruction Parameters.

Tomokazu Yamamoto¹, Koji Shigematsu¹, and Syo Matsumura^{1,2}

¹Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, and ²The Ultramicroscopy Research Center, Kyushu University.

PM-17 小角電子回折とローレンツ顕微鏡による機能性材料の磁気微細構造解析
Magnetic Microstructures Observation of Functional Materials by Small Angle
Electron Diffraction and Lorentz Microscopy.

Hiroshi Nakajima^{1,2}, Atsuhiro Kotani¹, Ken Harada^{1,3}, Yui Ishii¹, and Shigeo Mori¹ Department of Materials Science, Osaka Prefecture University, ²Applied quantum physics and nuclear engineering, Kyushu University, and ³RIKEN, Center for Emergent Matter Science.

PM-18 STEM 法による Mn₃(Ge,Cu)N の局所構造解析

Local Structure in Mn₃(Ge,Cu)N Revealed by Using Scanning/Transmission Electron Microscopy.

Kousuke Kurushima^{1,2}, Koshi Takenaka³, Yui Ishii¹, and Shigeo Mori¹

¹Department of Materials Science, Osaka Prefecture University, Sakai, Osaka, Japan, ³Toray Research Center, Ohtsu, Shiga, Japan, and ³Department of Applied Physics, Nagoya University, Nagoya, Japan.

PM-19 Dislocation Characteristics of Tensile Deformed Al-Mg and Al-Si Alloys.

Yuki Koshino^{1, 2}, Takuya Maeda¹, Yasuhiro Aruga², and Kenji Kaneko¹

¹Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan, and ²Kobe Steel, Ltd., Kobe, Japan.

PM-20 透過電子顕微鏡法によるナノ接点における

エレクトロマイグレーションのその場観察

In Situ Observation of Electromigration in Nanocontucts via Transmission Electron Microscopy.

Yasuchika Suzuki¹ and Tokushi Kizuka¹

¹Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba.

PM-21 電子顕微鏡法によるパルス電圧印加時の金ナノ接点のその場観察

In Situ Observation of Gold Nanocontucts During Pulsed Voltage Application via Transmission Electron Microscopy.

Yasuchika Suzuki¹ and Tokushi Kizuka¹

¹Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba.

PM-22 電子顕微鏡法によるパルス電圧印加時のタングステンナノ接点のその場観察

In Situ Observation of Tungsten Nanocontucts during Pulsed Voltage Application via Transmission Electron Microscopy.

Yasuchika Suzuki¹ and Tokushi Kizuka¹

¹Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba.

PM-23 透過電子顕微鏡用 2000 K 級高温試料ホルダーの開発

Development of a 2000 K Class High Temperature Sample Holder for Transmission Electron Microscopy.

Shogo Kikuchi¹, Manabu Tezura¹, Tomo-o Terasawa^{1,2}, and Tokushi Kizuka¹

¹Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, and ²Institute of Materials and Systems for Sustainability, Nagoya University.

PM-24 その場電子顕微鏡法による酸化ジルコニウムの高温観察

In Situ Transmission Electron Microscopy of Zirconium Dioxide at High Temperatures Shogo Kikuchi¹, Manabu Tezura¹, Tomo-o Terasawa^{1,2}, Tokushi Kizuka¹

¹Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, and

PM-25 高温その場電子顕微鏡法によるセラミックス遮熱コーティングの観察

In Situ High Temperature Observation of Ceramics Thermal Barrier Coating by Transmission Electron Microscopy.

Shogo Kikuchi¹, Manabu Tezura¹, Masao Kimura², and Tokushi Kizuka¹

¹Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, and

²Institute of Materials Structure Science, the High Energy Accelerator Research Organization (KEK).

²Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya.

PM-26 走査電子顕微鏡内におけるフレア電子の加速電圧依存性

Dependence of the Flare Electron on Accelerating Voltage in Scanning Electron Microscope.

Yoshifumi Hagiwara¹, Kentaro Morimoto², Yuka Ito², and Masatoshi Kotera¹

¹Major in Electrical and Electronic Engineering, Osaka Institute of Technology, and ²Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology.

PM-27 遠方で正帯電を起こすフレア電子について

Contribution of Flare Electrons on Enormous Large Areal Positive Charging.

Shota Nishimura¹, Takuya Kawamoto¹, Hideya Mizuno¹, Masaki Moriyama¹, and Masatoshi Kotera¹

¹Major in Electrical Electronic and Mechanical Engineering, Osaka Institute of Technology.

PM-28 走査電子顕微鏡試料室内における散乱電子の三次元軌道のシミュレーション

Three-dimensional Trajectory Simulation of Scattered Electrons in Scanning Electron Microscope Specimen Chamber.

Kazumasa Terada¹, Yoshifumi Hagiwara¹, and Masatoshi Kotera¹ Osaka Institute of Technology, Osaka, Japan.

PM-29 走査型電子顕微鏡におけるフォギング電子散乱の時間依存性のシミュレーション Simulation of Time Dependence of Fogging Electron Scattering in Scanning Electron Microscope.

Takatoshi Donga¹ and Masatoshi Kotera¹

¹Major in Electrical and Electronic and Mechanical Engineering, Osaka Institute of Technology.

PM-30 ユーザビリティを向上した新型 20-120 kV TEM HT7800 シリーズの開発

Newly Developed 20-120 kV TEM "HT7800 Series" with the Enhanced Usability. Hiromi Mise¹, Marina Wayama¹, Akiko Wakui¹, Mami Konomi¹, and Toshie Yaguchi¹ Hitachi High-Technologies Corporation, Tokyo, Japan.

<Late Breaking Poster>

LB-01 走査イオン顕微鏡におけるチャネリングコントラストの分子動力学シミュレーション 大宅 薫¹

1徳島大学名誉教授

LB-02 電位依存チャネルの作動原理の直接観察

重松 秀樹 1,2, 白水 美香子 1, Sigworth Fred2

¹理化学研究所ライフサイエンス技術基盤研究センター, ²Yale 大学医学部細胞・分子生理学専攻

LB-03 SXES による 3d 遷移金属元素の L 発光に含まれる情報の解析 寺内 正己 ¹, 越谷 翔悟 ², 木本 浩司 ² ¹東北大多元研, ²物質・材料研究機構

LB-04 STEM-EELS を用いた Ag ナノ粒子間の LSPR 相互作用の解析

松本 周士1,國貞 雄治1,坂口 紀史1

LB-05 電子線照射による固溶限を超える Sn を含む結晶 Ge の低温合成

木村 俊樹 1 , 石丸 学 1 , 奥川 将行 2 , 仲村 龍介 2 , 保田 英洋 3 1 九州工業大学 大学院 工学府, 2 大阪府立大学 大学院 工学府, 3 大阪大学 超高圧電子顕微鏡センター

LB-06 X線顕微鏡によるマウス初期胚の3次元 μm 構造観察

武田 佳彦 1, 田村 勝 2

1北大院工

¹リガク X線研究所, ³理化学研究所 バイオリソースセンター

LB-07 周期的組織の SEM 観察において現れるモアレの特性

猪俣 茜¹, 赤嶺 大志², 板倉 賢², 村上 恭和³, 西田 稔²¹九大院,²九大総理工,³九大工

LB-08 非晶質 GeSn の構造と結晶化過程の解析

東山 将士 1 、木村 俊樹 1 、石丸 学 1 、奥川 将行 2 、仲村 龍介 2 1 九州工業大学大学院工学府, 2 大阪府立大学工学研究科

LB-09 マイクロシェブロンノッチ曲げ試験法と SEM/FIB トモグラフィーを

組み合わせた亀裂進展経路の3次元解析

吉田 歩夢 ¹,本田 佳暉 ²,山﨑 重人 ³, 光原 昌寿 ³,中島 英治 ³, 後藤 裕明 ⁴,津田 圭一 ⁴ ¹九州大学工学部, ²九州大学大学院総合理工学府, ³九州大学大学院総合理工学研究院, ⁴住友電気工業株式会社

LB-10 樹脂包埋組織切片中の GFP 蛍光を捉える効果的な光電子相関顕微鏡法の検討

豊岡 公徳 1 ,成川 苗子 1 ,佐藤 繭子 1 ,前田 躍 2 ,羽根田 茂 2 ,許斐 麻美 2 ,川俣 茂 2 ,星野 吉延 1 理研 CSRS, 2 日立ハイテク

LB-11 SEM を用いた HoMnO₃ マルチフェロイック酸化物の強誘電ドメイン観察

吉岡 秀樹 1 , Cho Young ji^{2} , 赤嶺 大志 3 , 堀部 陽一 4 , 村上 恭和 2 , 西田 稔 3 1 九大総理工 (院生) , 2 九大工, 3 九大総理工, 4 九工大工

LB-12 SEM 測定による導電率が異なるイオン液体コーティング検証

下田 周平1

1北海道大学 触媒科学研究所

LB-13 電子線トモグラフィー法を用いたフォルミン蛋白質 Fhod3 による サルコメア構築機構の解明

下城 奈央1, 武谷 立2,安永 卓生

1九州工業大学情報工学部 生命情報工学科,2宮崎大学医学部 薬理学分野

LB-14 新規蛍光色素 Fluolid を用いた包埋前免疫染色法による光電子相関顕微鏡法 -腎虚血再灌流障害時の CX3CL1 発現をモデルとして—

近藤 照義¹, 金丸 孝昭², 西 健太郎³ 矢住 京⁴, 松岡 洋平⁴, 磯部信一郎³, 中村 桂一郎⁵, 森本 景之⁶

1九州保健福祉大学 保健科学部,2九州大学病院 中央形態分析室,3九州産業大学 生命科学部

4九州産業大学 学術研究推進機構,5久留米大学 医学部,6産業医科大学 医学部

LB-15 Mg イオン注入 Si における準安定相形成

小林 勇輝¹, 内藤 宗幸¹, C. Bachelet², J. Bourcois²

¹甲南大理工, ² Centre de Sciences Nucleaires et de Sciences de la Matiere

LB-16 透過電子顕微鏡暗視野トモグラフィーにおける課題とその克服に向けた手法開発

坂井 裕貴1, 斉藤 光2, 波多 聰2

1九州大学大学院総合理工学府,2九州大学大学院総合理工学研究院

LB-17 正常および先天性異常ヒト血小板の微細構造

鈴木 英紀1

1日本医科大学 共同研究施設 形態解析研究室

LB-18 Site location analysis of Au dopants in Cu₆Sn₅ intermetallic compound by Cs-corrected STEM

Wenhui Yang¹, Tomokazu Yamamoto¹, Kazuhiro Nogita², Syo Matsumura¹

¹ Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University,

² Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining Engineering, The University of Queensland